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ABSTRACT

Context. Some contracting or expanding stars are thought to host a large-scale magnetic field in their radiative interior. By interacting
with the contraction-induced flows, such fields may significantly alter the rotational history of the star. They thus constitute a promising
way to address the problem of angular momentum transport during the rapid phases of stellar evolution.
Aims. In this work, we aim at studying the interplay between flows and magnetic fields in a contracting radiative zone.
Methods. We perform axisymmetric Boussinesq and anelastic numerical simulations in which a portion of radiative zone is modelled
by a rotating spherical layer, stably stratified and embedded in a large-scale (either dipolar or quadrupolar) magnetic field. This layer
is subject to a mass-conserving radial velocity field mimicking contraction. The quasi-steady flows are studied in strongly or weakly
stably stratified regimes relevant for pre-main sequence stars and for the cores of subgiant and red giant stars. The parametric study
consists in varying the amplitude of the contraction velocity and of the initial magnetic field. The other parameters are fixed with the
guidance of the previous study of Gouhier et al. (2021).
Results. After an unsteady phase during which the toroidal field grows linearly and then back-reacts on the flow, a quasi-steady
configuration is reached, characterised by the presence of two magnetically decoupled regions. In one of them, magnetic tension
imposes solid-body rotation. In the other, called the dead zone, the main force balance in the angular momentum equation does not
involve the Lorentz force and a differential rotation exists. In the strongly stably stratified regime, when the initial magnetic field is
quadrupolar, a magnetorotational instability is found to develop in the dead zones. The large-scale structure is eventually destroyed
and the differential rotation is able to build-up in the whole radiative zone. In the weakly stably stratified regime, the instability is not
observed in our simulations but we argue that it may be present in stars.
Conclusions. We propose a scenario that may account for the post-main sequence evolution of solar-like stars, in which a quasi-solid
rotation can be maintained by a large-scale magnetic field during a contraction timescale. Then, an axisymmetric instability would
destroy this large-scale structure and enables the differential rotation to set in. Such a contraction driven instability could also be at
the origin of the observed dichotomy between strongly and weakly magnetic intermediate-mass stars.

Key words. instabilities – magnetohydrodynamics (MHD) – methods: numerical – stars: magnetic field – stars: rotation – stars:
interiors

1. Introduction

Rotation is ubiquitous at every stage of stellar evolution. Yet, it
is still often considered as a second order effect in stellar evo-
lution models. A full description necessarily entails by a thor-
ough study of the differential rotation and meridional circulation
induced by the rotation, how they interact with other physical
processes (e.g. magnetic field or internal gravity waves), and the
ensuing potential instabilities. In his seminal work, Zahn (1992)
proposed a model for the transport of chemical elements and
angular momentum (AM) (without magnetic field and internal
gravity wave) that has been later implemented in state-of-the-art
stellar evolution codes. One of the strong assumption is that the
differential rotation in radiative zones is close to shellular (i.e.
constant on a isobar) because of the anisotropic turbulence in-
duced by shear instabilities in stably stratified conditions. This
formalism has been successful at explaining a large number of
stellar observations (see Maeder (2008) for a review). However
a growing body of evidence shows that additional AM transport
mechanisms are still needed. This is particularly true for con-
tracting stars. During the pre-main sequence (PMS) or post-MS

evolution, a spin-up of stellar cores is naturally produced. How-
ever, observations of surface rotation of stars in young clusters
(Gallet & Bouvier 2013) as well as asteroseismic studies of red
giant stars (Eggenberger et al. 2012; Ceillier et al. 2013; Marques
et al. 2013) tend to show that rotation rates are in fact strongly
overestimated in models. In order to improve this formalism, the
first thing to ask is what kind of flows are really expected in those
contracting stars.

In a previous work (Gouhier et al. 2021), we investigated
the differential rotation and meridional circulation produced in
a modelled contracting stellar radiative zone. This axisymmet-
ric study included the effects of stable stratification and was
conducted both under the Boussinesq and the anelastic approx-
imations but the effects of a magnetic field were ignored. We
showed that a radial differential rotation should be expected
only in strongly stably stratified radiative zones such as the de-
generate cores of subgiants. Indeed, any meridional circulation
is inhibited by the strong buoyancy force and the characteris-
tic amplitude of the differential rotation in the linear regime is
found to be proportional to the ratio of the viscous to contrac-
tion timescales ∆Ω/Ω0 ∝ τν/τc. In conditions relevant for the

Article number, page 1 of 31

ar
X

iv
:2

20
1.

02
64

5v
1 

 [
as

tr
o-

ph
.S

R
] 

 7
 J

an
 2

02
2

songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang




A&A proofs: manuscript no. main

outside of the degenerate cores of subgiants and for PMS stars
though, thermal diffusion weakens the stable stratification and
allows a meridional circulation to exist, with a typical amplitude
of the order of the contraction speed. The differential rotation
profile then exhibits both a dependence in latitude and radius and
its characteristic amplitude in the linear regime is found to be
∆Ω/Ω0 ∝ τED/τc, where τED is the Eddington-Sweet timescale
associated with the AM transport by the meridional flow. Both
estimates, assuming a contraction timescale comparable to the
Kelvin-Helmholtz timescale, tend to indicate that the amplitude
of the differential rotation can be quite strong and that another
process of AM transport should be invoked to reproduce the ro-
tation rates of pre-MS and post-MS stars.

The presence of a large-scale magnetic field in such con-
tracting radiative zones can drastically modify this picture. It
is commonly agreed that radiative zones can host such fields
(see Braithwaite & Spruit (2017) for a review). Magnetic fields
with surface intensities of a few hundred Gauss have indeed been
detected in a fraction of intermediate-mass PMS stars (Alecian
et al. 2013). These stars are most probably the progenitors of the
MS chemically peculiar Ap/Bp stars that host large-scale mostly
dipolar fields with intensities ranging from 300 G to 30 kG (Do-
nati & Landstreet 2009). Meanwhile, a distinct population of MS
intermediate-mass stars, including the A-type star Vega and the
Am-type stars Sirius, β Ursae Majoris and θ Leonis, exhibits
much weaker (∼ 1 G) multi-polar magnetic fields (Lignières
et al. 2009; Petit et al. 2010, 2011; Blazère et al. 2016). This
magnetic dichotomy could be explained if, during the PMS, con-
traction forces a differential rotation that destroys pre-existing
large scale weak magnetic fields through magnetohydrodynamic
(MHD) instabilities (Aurière et al. 2007; Lignières et al. 2014;
Jouve et al. 2015, 2020).

Unlike PMS stars, the radiative zone of post-MS stars is
overlaid by a large convective envelope preventing any direct
measurement of a magnetic field in the convectively stable re-
gions. Recently, asteroseismology revealed a class of red giants
exhibiting dipolar oscillation modes with a very weak visibility
(Mosser et al. 2012). This phenomenon has been attributed to
the presence of an internal magnetic field modifying the angu-
lar structure of the dipole waves thus leading to their trapping
in the radiative core (Fuller et al. 2015). This so-called green-
house effect, supported by other authors (Stello et al. 2016a,b;
Cantiello et al. 2016) is, however, seriously questioned because
these modes preserve their mixed character at odds with Fuller’s
scenario (Mosser et al. 2017). In parallel, the possibility to detect
magnetic fields through their effect on the oscillation frequencies
is under investigation (see e.g., Bugnet et al. (2021)). Awaiting
observational evidence, theoretical work strongly supports the
presence of magnetic fields in stars that possess a convective
core (MS stars with M & 1.2 M�). The numerical simulations
of core-dynamos of MS A- and B-type stars (Brun et al. 2005;
Augustson et al. 2016) indicate that magnetic fields with intensi-
ties ranging from 0.1− 1.0 MegaGauss can indeed be generated.
Such a magnetic field could then relax into a large-scale stable
configuration in the radiative interior of the post-MS stars where
it would be buried for the rest of its evolution (Braithwaite &
Spruit 2004).

Large-scale magnetic fields are able to impose a quasi-solid
rotation on very short timescales, even for very weak intensi-
ties (Ferraro 1937; Mestel & Weiss 1987). Besides, enforcing
a quasi-solid rotation during ∼ 1 Gyr after the end of the MS
enabled Spada et al. (2016) to reproduce the rotation rates of
sub-giants, as measured by asteroseismology (Deheuvels et al.
2014). This result was also obtained by Eggenberger et al. (2019)

and an observational support was then provided by Deheuvels
et al. (2020) who measured a near solid rotation in two young
subgiants. Interestingly, the efficiency of the AM transport then
seems to decrease up to the tip of the red giant branch (RGB)
before increasing again (Spada et al. 2016; Eggenberger et al.
2019; Deheuvels et al. 2020). Those works suggest a scenario
broken down into several key phases. First, a quasi-solid rotation
is maintained for some time through an efficient AM transport
mechanism (possibly magnetic tension imposed by a large-scale
field). Then, this mechanism would become inefficient and dif-
ferential rotation would build up again before another AM trans-
port mechanism, such as turbulent transport induced by MHD
instabilities (Spruit 2002; Rüdiger et al. 2015; Fuller et al. 2019;
Jouve et al. 2020) takes over.

In this work, we intend to study the flows induced by a con-
tracting radiative zone in the presence of a large-scale magnetic
field, through axisymmetric MHD simulations. In particular, we
focus on the structure of the steady-states differential rotation
and on the ability of the magnetic field to transport AM. The pa-
per is organised as follows: in Sect. 2 we present the mathemat-
ical model, then in Sect. 3, the different timescales involved in
our problem. The initial and boundary conditions as well as the
numerical method are described in Sects. 4 and 5 respectively.
In Sect. 6 we provide the reader with the relevant timescales in
the stellar context and the consequences for our numerical study.
The results of the simulations in the viscous and Eddington-
Sweet regimes are finally given in Sect. 7, and are then sum-
marised in Sect. 8 where the astrophysical implications are also
discussed.

2. Mathematical formulation

In our previous work (Gouhier et al. 2021), we investigated the
differential rotation and meridional flows produced in a contract-
ing stellar radiative zone. In this follow-up work, we add the ef-
fect of an initial large-scale magnetic field. To do so, we numer-
ically solve the Boussinesq or anelastic magnetohydrodynami-
cal (MHD) equations in a spherical shell filled with a stably-
stratified fluid subject to a radial contraction and embedded in
a magnetic field. In this section we present the governing equa-
tions that we numerically solve in the two aforementioned ap-
proximations.

In this study, the fluid contraction is modelled using a mass-
conserving contraction velocity field defined by

# »
V f = V f (r) #»e r = −

V0 ρ0 r2
0

ρr2
#»e r. (1)

where r is the radius and ρ the background density, r0 and ρ0
their respective values at the outer sphere and V0 is the amplitude
of the contraction velocity at the outer sphere. Using the Lantz-
Braginsky-Roberts (LBR) approximation (Lantz (1992), Bragin-
sky & Roberts (1995)), assuming a uniform kinematic viscosity
ν, thermal diffusion κ, magnetic diffusion η, and neglecting the
centrifugal effects and local sources of heat, the dimensionless
axisymmetric anelastic equations of a magnetised fluid (Jones
et al. 2011) undergoing contraction read

#»

∇ ·

[
ρ̃
(

#»

Ũ +
#»

Ṽ f

)]
= 0 and

#»

∇ ·
#»

B̃ = 0, (2)
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Ro

∂ #»

Ũ
∂t

+

((
#»

Ũ +
#»

Ṽ f

)
·

#»

∇

) (
#»

Ũ +
#»

Ṽ f

) + 2 #»e z ×

(
#»

Ũ +
#»

Ṽ f

)
=

−
#»

∇

(
Π̃
′

ρ̃

)
+

S̃
′

r̃2
#»e r +

E

ρ̃

#»

∇ ·
#»
#»
σ̃ +

(
LuE
Pm

)2 R−1
o

ρ̃

[(
#»

∇ ×
#»

B̃
)
×

#»

B̃
]
,

(3)

∂
#»

B̃
∂t

=
#»

∇ ×

[(
#»

Ũ +
#»

Ṽ f

)
×

#»

B̃
]

+
1

Rm

#»

∇2 #»

B̃ , (4)

ρ̃T̃
[
PrRo

(
∂S̃

′

∂t
+

((
#»

Ũ +
#»

Ṽ f

)
·

#»

∇

)
S̃
′

)
+ Pr

(
N0

Ω0

)2 (
Ũr + Ṽ f

) dS̃
dr


= E

#»

∇ ·

(
ρ̃T̃

#»

∇ S̃
′

)
+ DiPecE2

Q̃ν + P−1
m

(
LuE

PmRo

)2 (
#»

∇ ×
#»

B̃
)2

 ,
(5)

where the diffusion of entropy is introduced in the energy
equation instead of the diffusion of temperature (Braginsky &
Roberts (1995); Clune et al. (1999)). The non-dimensional form
(identified by the tilde variables) of these equations is obtained
using the radius of the outer sphere r0 as the reference length-
scale, the value of the contraction velocity field at the outer
sphere V0 as a characteristic velocity, and τc = r0/V0 as the ref-
erence timescale of the contraction. The frame rotates at Ω0, the
rotation rate of the outer sphere and all the thermodynamics vari-
ables are expanded as a background value plus fluctuations, re-
spectively denoted with an overbar and a prime. The background
density and temperature field are non-dimensionalised respec-
tively by the outer sphere density ρ0 and temperature T0, while
the background gradients of temperature and entropy fields are
adimensionalised using the temperature and entropy difference
∆T and ∆S between the two spheres. The pressure fluctuations
are non-dimensionalised by ρ0r0Ω0V0 and the entropy fluctua-
tions by CpΩ0V0/g0, where Cp is the heat capacity and g0 the
gravity at the outer sphere. Finally we use the value of the sur-
face poloidal field at the poles B0 as the reference scale for the
magnetic field.

In Eqs. (2), (3), (4), and (5),
#»
U is the velocity field, σ̃i j is

the dimensionless stress tensor, Q̃ν is the dimensionless viscous
heating and the gravity profile is ∝ r−2. The reference state is
non-adiabatic and a uniform positive entropy gradient is used to
produce a stable stratification. It is related to the Brunt-Väisälä
frequency defined by:

N0 =

√
g0

Cp

∆S
r0
, (6)

and which controls the amplitude of this stable stratification. The
magnitude of the deviation to the isentropic state is controlled
by the parameter εs = ∆S /Cp chosen sufficiently small to ensure
the validity of the anelastic approximation. With the dissipation
number Di = g0r0/T0Cp it sets the background temperature and
density profiles (see Gouhier et al. (2021)).

These anelastic equations involve six independent dimen-
sionless numbers, a Rossby number based on the amplitude

of the contraction velocity Ro = V0/Ω0r0, the Ekman number
E = ν/Ω0r2

0, the Prandtl number Pr = ν/κ, the ratio between the
reference Brunt-Väisälä frequency and the rotation rate of the
outer sphere N0/Ω0, the magnetic Prandtl number Pm = ν/η and
the Lundquist number Lu = B0r0/

√
µ0ρ0η where µ0 is the vac-

uum permeability. From these dimensionless numbers, three ad-
ditional parameters can then be defined: a contraction Reynolds
number Rec = Ro/E, a Péclet number Pec = Pr Rec and a mag-
netic Reynolds number Rm = Pm Rec.

When the compressibility effects are neglected, except in the
buoyancy term of the momentum equation, the Boussinesq ap-
proximation is recovered. In that case, using Ω0V0T0/g0 as the
scale of the temperature deviations Θ′, the dimensionless gov-
erning equations read

#»

∇ ·

(
#»

Ũ +
#»

Ṽ f

)
= 0 and

#»

∇ ·
#»

B̃ = 0, (7)

Ro

∂ #»

Ũ
∂t

+

((
#»

Ũ +
#»

Ṽ f

)
·

#»

∇

) (
#»

Ũ +
#»

Ṽ f

) + 2 #»e z ×

(
#»

Ũ +
#»

Ṽ f

)
=

−
#»

∇Π̃
′

+ Θ̃
′ #»

r̃ + E
#»

∇2
(

#»

Ũ +
#»

Ṽ f

)
+

(
LuE
Pm

)2

R−1
o

[(
#»

∇ ×
#»

B̃
)
×

#»

B̃
]
,

(8)

∂
#»

B̃
∂t

=
#»

∇ ×

[(
#»

Ũ +
#»

Ṽ f

)
×

#»

B̃
]

+
1

Rm

#»

∇2 #»

B̃ , (9)

PrRo

[
∂Θ̃

′

∂t
+

((
#»

Ũ +
#»

Ṽ f

)
·

#»

∇

)
Θ̃
′

]
+ Pr

(
N0

Ω0

)2 (
Ũr + Ṽ f

) dT̃
dr

= E
#»

∇2Θ̃
′

,

(10)

where the gravity profile is now ∝ r, the reference Brunt-Väisälä
frequency is defined using the correspondence ∆S /Cp = ∆T/r0
in Eq. (6) and the contraction velocity field Eq. (1) is simplified
using ρ = ρ0.

To conclude this section we note that when the anelastic ap-
proximation is used the parameter space is defined by eight di-
mensionless numbers: εs, Di, Rec, E, Pr, Pm, Lu and N2

0/Ω
2
0. In-

stead, only the last six are necessary in the Boussinesq approxi-
mation. In this study, only Rec, Lu and the product Pr (N0/Ω0)2

will be varied.

3. Timescales of physical processes

In this section, we describe the various timescales involved in the
transport of AM in our problem. We start by briefly recalling the
relevant hydrodynamical timescales (see Gouhier et al. (2021))
then we introduce two timescales associated with the presence
of a magnetic field.
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In this work, the dimensional form of the AM equation under
the Boussinesq approximation reads

∂Uφ

∂t
+ NL + 2Ω0Us︸ ︷︷ ︸

Coriolis term

−
1

µ0ρ0

(
#»
B p ·

#»

∇
)

Bφ︸                ︷︷                ︸
Lorentz force

− νD2Uφ︸  ︷︷  ︸
Viscous term

=

V0r2
0

r3

∂

∂r

(
rUφ + r2 sin θΩ0

)
︸                             ︷︷                             ︸

Contraction

,

(11)

where D2 is the azimuthal component of the vector Laplacian
operator, Us = cos θUθ + sin θUr is the velocity field perpendic-
ular to the rotation axis and NL denotes the non-linear advection
term. By balancing the partial time derivative with the contrac-
tion term in Eq. (11) we recover the contraction timescale used
to non-dimensionalise the governing equations in Sect. 2

τc =
r0

V0
, (12)

as well as its linear form

τL
c =

r0

V0

∆Ω0

Ω0
, (13)

when ∆Ω/Ω0 � 1. In the anelastic approximation the contrac-
tion term in Eq. (11) is multiplied by ρ0/ρ and the resulting
timescale is then weighted by the background density profile

τA
c =

(∫ 1

ri/r0

ρ

ρ0
d (r/r0)

)
τc or τLA

c =

(∫ 1

ri/r0

ρ

ρ0
d (r/r0)

)
τL

c , (14)

where τLA

c denotes the linear version. The AM transport by con-
traction can be balanced either by the viscous processes on a
viscous timescale τν = r2

0/ν, or by a meridional circulation of
Eddington-Sweet type, in which case it redistributes the AM on
the following timescale

τED =
r2

0

κ

(
N0

Ω0

)2

. (15)

Ekman layers tend to develop at the spherical boundaries to
accommodate the interior flow to the boundary conditions. In un-
stratified flows, they drive a global circulation. In stars, the stable
stratification efficiently opposes this global flow although it can
still exist in numerical simulations because the Ekman numbers
can not reach stellar values. It then transports the AM on a spin-
up timescale defined by

τE =

√
r2

0

Ω0ν
. (16)

The relative importance of these AM redistribution processes
is given by the ratio of the above timescales, namely:

τED

τν
= Pr

(
N0

Ω0

)2

;
τE

τν
=
√

E ;
τE

τED
=

√
E

Pr

(
N0

Ω0

)2 . (17)

Two main dimensionless numbers thus appear, the Ekman num-
ber E and the Pr (N0/Ω0)2 parameter. As first noticed by Garaud
(2002), the latter is of prime interest since it controls the flow
dynamics. Thus, at fixed Pr and N0, the author shows that de-
pending on the rotation rate value this parameters defines two
rotation regimes (slow or fast). More in line with our work, Ga-
raud & Brummell (2008); Garaud & Garaud (2008); Garaud &
Acevedo-Arreguin (2009); Wood & Brummell (2012); Acevedo-
Arreguin et al. (2013) have shown that it also controls the effi-
ciency of the burrowing of the meridional circulation in radia-
tive layers adjacent to convective regions. In particular, when
Pr (N0/Ω0)2 � 1 this circulation is suppressed by the stable
stratification, a situation similar to the one that we encountered
in the viscous regime described in Gouhier et al. (2021). In our
case, E and Pr (N0/Ω0)2 allow us to distinguish three regimes of
interest:

Pr

(
N0

Ω0

)2

�
√

E � 1 ;
√

E � Pr

(
N0

Ω0

)2

� 1 ;

√
E � 1 � Pr

(
N0

Ω0

)2

.

(18)

As discussed in Gouhier et al. (2021), the two last regimes,
namely the Eddington-Sweet regime τE � τED � τν and the
viscous regime τE � τν � τED, are the most relevant for stars.
We thus focus on them for the magnetic study.

The magnetic field introduces two new timescales: the mag-
netic diffusion timescale

τη =
r2

0

η
, (19)

and the Alfvén timescale

τAp =
r0
√
µ0ρ0

B0
. (20)

When the density contrast is taken into account (anelastic ap-
proximation), a new Alfvén timescale can be defined as

τA
Ap

=

∫ 1

ri/r0

√
ρ

ρ0
d (r/r0)

 τAp . (21)

4. Initial and boundary conditions

Initially, we impose a dipolar or a quadrupolar poloidal magnetic
field. In both cases, the radial distribution of the magnetic field
is such that the azimuthal current density does not depend on
r,

(
∂ jφ/∂r = 0

)
, to avoid possible numerical instabilities result-

ing from strong current sheets at the boundaries. For the dipole
topology (left panel in Fig. 1) the initial field reads

#»
B (r, θ, t = 0) =

3rB0

r0

(
1 − (ri/r0)4

) cos θ
1 +

r4
i

3r4 −
4r0

3r

 #»e r

−
3rB0

2r0

(
1 − (ri/r0)4

) sin θ
3 − r4

i

3r4 −
8r0

3r

 #»e θ.
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Fig. 1: Meridional cuts of the norm of the initial magnetic field
(colour) for the dipole Eq.(22) (left) and the quadrupole Eq.(23)
(right). The black lines show the poloidal field lines.

(22)

For the quadrupole topology (right panel in Fig. 1) it takes the
following form

#»
B (r, θ, t = 0) =

rB0

2r0

(
1 − (ri/r0)5

) · (2 cos2 θ − sin2 θ
)

 r5
i

r5 − 1 − 5 ln
( r0

r

) #»e r −
rB0

r0

(
1 − (ri/r0)5

) sin θ cos θ

1 − r5
i

r5 −
15
2

ln
( r0

r

) #»e θ.

(23)

Figure 1 shows that some field lines connect to the inner and
outer boundaries while others are only connected to the outer
boundary or even loop-back on themselves inside the domain. In
both configurations, the norm of the magnetic field at the poles
and at the outer sphere is B0.

Insulated boundary conditions are imposed at the inner and
outer spheres. For our axisymmetric setup, these conditions
translate into

# »
Bp =

#»

∇Φ and Bφ = 0 at r = ri, r0, (24)

where Φ is a potential field.
The rotation rate is chosen to be initially uniform Ω(r, θ, t =

0) = Ω0 in the Boussinesq approximation. In the anelastic case,
the initial profile is

Ω(r, θ, t = 0) = ρ(r) Ω0 exp
(
− (r − r0)

σ

)
, (25)

where σ controls the amplitude of the differential rotation.
For all simulations we impose stress-free conditions at the

inner sphere for the latitudinal and azimuthal velocity fields, and
impermeability condition for the radial velocity field:

Ur =
∂

∂r

(
Uφ

r

)
=

∂

∂r

(Uθ

r

)
= 0 at r = ri. (26)

At the outer sphere we impose an impermeability condition on
the radial velocity field and no-slip conditions on the latitudinal
and azimuthal velocity fields:

Ur = Uθ = Uφ = 0, (27)

the rotation of the outer sphere being thus fixed to Ω0. The
boundary layers induced by these conditions in the absence of
magnetic field were analysed in Gouhier et al. (2021).

Finally in the Boussinesq approximation the temperature is
prescribed at the inner and outer spheres and the initial tempera-
ture field is the purely radial solution of the conduction equation.
In the anelastic case, the entropy is also fixed at the boundaries.
The initial stably stratified background density and temperature
profiles are displayed in Gouhier et al. (2021).

5. Numerical method

The numerical study is carried out using the fully docu-
mented, publicly available code MagIC (https://github.
com/magic-sph/magic) to solve the set of axisymmetric
magneto-hydrodynamical equations in a spherical shell under
the anelastic approximation (Gastine & Wicht 2012) (Eqs. (3),
(4) and (5)) or under the Boussinesq approximation (Wicht
2002) (Eqs. (8), (9) and (10)). The solenoidal condition of Eqs.
(2) and (7) is ensured by a poloidal–toroidal decomposition for
the mass flux and the magnetic field. Then the different fields are
expanded on the basis of the spherical harmonics for the horizon-
tal direction, and on the set of the Chebyshev polynomials for the
radial direction. In particular, the Chebyshev discretisation guar-
antees a better resolution near the boundaries. The extent of the
spherical shell can be reduced to a two-dimensional domain such
asD = {ri = 0.3 ≤ r ≤ r0 = 1.0; 0 ≤ θ ≤ π}.

In the viscous regime, most of the simulations are performed
with Nr × Nθ = 127 × 256 while for the most resolved cases
Nr × Nθ = 193 × 512. In the Eddington-Sweet regime, a higher
resolution is needed and for most of the simulations Nr × Nθ =
193 × 512 where, Nr can be increased when the boundary layers
need to be carefully resolved.

6. Space of parameters

In this section, we estimate the relevant timescales in stars in or-
der to constrain the regime of parameters of our numerical study.

6.1. The stellar context

The magnetic fields considered in this paper are large-scale fos-
sil fields. They can be remnants of the proto-stellar phase, or the
product of a core-dynamo buried in the radiative zone. At large
scales, the ohmic diffusion timescale is around one Gyr (Braith-
waite & Spruit 2017), i.e. longer than the MS lifetime of the
intermediate mass-stars. Dynamic processes such as the Aflvén
waves propagation occur over much shorter timescales, and we
will always have

τAp � τη. (28)

Typical magnetic Prandtl numbers in stellar plasmas are ∼ 5 ×
10−3 − 10−2 (Rüdiger et al. 2016) so that τη � τν. There is an
exception though in the core of subgiants where the electrons are
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partially or fully degenerate. In that case, the Prandtl and mag-
netic Prandtl numbers increase because the thermal and mag-
netic diffusivities as well as the kinematic viscosity are domi-
nated by the electron conduction (Garaud et al. 2015). The mag-
netic Prandtl number then ranges from 0.1 to 10 (Cantiello &
Braithwaite 2011; Garaud et al. 2015; Rüdiger et al. 2015) and
consequently τη ≤ τν or τν ≤ τη.

In Gouhier et al. (2021) we already found that contracting
stars (PMS or subgiant stars) always lie in the regime

τc � τν, τED. (29)

In addition, we showed that the Eddington-Sweet regime is rele-
vant for PMS stars and outside the degenerate core of subgiants.
We thus have Pr (N0/Ω0)2 � Pm � 1 or τED � τη � τν in
these cases. By contrast, the degenerate cores of subgiants ex-
perience a viscous regime with higher Pm, such that 1 ∼ Pm �

Pr (N0/Ω0)2 i.e. τν ∼ τη � τED.
We can now wonder how the Alfvén time compares to the

contraction time in stars. We lack precise information about the
magnetic field intensities within stars but we can get some in-
sight from the spectropolarimetric data of Herbig stars or from
the asteroseismology of red giant stars combined to numerical
simulations. On the one hand high-resolution spectropolarimet-
ric surveys show that a small fraction of HAeBes hosts large-
scale dipolar fields stronger than a hundred Gauss (Wade et al.
(2005); Alecian et al. (2013)). For a typical Herbig star of 3 M�
and 3 R� hosting a magnetic field of 300 G, the Alfvén poloidal
timescale, computed using the mean density of the star, would be
of the order of a few tens of years. For these PMS stars the mass
is between 2 M� and 5 M� and the Kelvin-Helmholtz timescale
τKH typically ranges from 23 to 1.2 Myr (Maeder 2008). Then,
assuming τc ≈ τKH, implies that τAp � τc.

On the other hand, the recent discovery of depressed dipole
oscillation modes in red giants (Mosser et al. 2012) has been as-
signed to a greenhouse effect resulting from a strong magnetic
field ∼ 1 MG trapping the gravity waves in the radiative core
(Fuller et al. 2015). Although this scenario is controversial (see
e.g., Mosser et al. (2017)), the three-dimensional MHD simula-
tions of convective core dynamos of Brun et al. (2005); August-
son et al. (2016) also point towards magnetic field intensities of
the order of 105−106 G. Such intensities again lead to an Alfvén
timescale much smaller than the contraction timescale. Even for
a 1 G magnetic field in a subgiant such as KIC 5955122 which is
a 1.1 M� star of 2 R� with a radiative interior extending to 0.74
R?, we get an Alfvén timescale of 8 · 103 years. According to
Deheuvels et al. (2020), the instantaneous contraction time de-
fined as Ωcore/ (dΩcore/dt), where Ωcore is the mean rotation rate
of the core, varies between 100 Myr and 3 Gyr in the subgiant
phase. Its average value during this phase is ∼ 1 Gyr, thus much
higher than the Alfvén timescale corresponding to a 1 G field.

6.2. The numerical study

We intend to perform numerical simulations in the timescale
regimes thought to exist in stars. However the regime τc �

τν, τED is strongly non-linear and too challenging numerically
(Gouhier et al. 2021). The ratio τν/τc = Rec will instead vary
in the range 0.1 − 5 which will allow us to study the vis-
cous regime in the linear and non-linear regimes, while the
Eddington-Sweet regime will be studied in the linear and weakly
non-linear regimes as τED/τc = Pr (N0/Ω0)2 Rec varies between
10−3 and 0.5.

The fact that τν/τc ∼ 1 also constrains the magnetic Prandtl
number. Indeed, to avoid a significant dissipation of the initial
poloidal field during the simulation, the diffusion time τη must
exceed the timescale τc ∼ τν for the establishment of the station-
ary flow which implies that Pm has to be larger than one. Such
magnetic Prandtl numbers are expected in the degenerate cores
of subgiants but are not realistic in the radiative envelope of sub-
giants or PMS stars. As in Charbonneau & MacGregor (1993),
to prevent the diffusion of the poloidal field, an alternative op-
tion would have been to fix it. This is however not suited for
the present problem where at large-scale, the field topology is
modified by the contraction.

Finally, simulations are run for τΩ/τc = RecE, τΩ/τν = E
and τΩ/τED = E/Pr (N0/Ω0)2 far from typical stellar values
since realistic Ekman numbers are numerically unreachable.
However, as shown in Gouhier et al. (2021), the flow dynam-
ics do not critically depend on these ratios and we thus expect
the model associated to our numerical simulations to remain
valid for stars. Indeed, the first important parameter is τED/τν =
Pr (N0/Ω0)2 which determines if we are in the Eddington-Sweet
or viscous regime. Realistic values can be used for this param-
eter. Another important ratio is τν/τc = Rec which governs the
level of differential rotation. Realistic values for this last param-
eter are more difficult to reach numerically but we come back on
the implications of this discrepancy in Sect. 8.

To conclude, all the simulations performed in the viscous
regime fulfil the following conditions:

τΩ � τAp � τc ≤ τν � τη � τED, (30)

or in terms of dimensionless numbers

E �
(

Lu

Pm

)−1

� Re−1
c ≤ 1 � Pm � Pr

(
N0

Ω0

)2

. (31)

For the Eddington-Sweet regime, we shall have

τΩ � τAp � τED < τc � τν � τη, (32)

or equivalently

E �
(

Lu

Pm

)−1

� Pr

(
N0

Ω0

)2

< Re−1
c � 1 � Pm. (33)

7. Numerical results

We are mostly interested in the steady state differential rotation
produced by the contracting flow in the stably stratified magne-
tised layer. We shall investigate separately the viscous regime
√

E � 1 � Pr (N0/Ω0)2 and the Eddington-Sweet regime
√

E � Pr (N0/Ω0)2 � 1. For the initial magnetic field we con-
sider either a dipole or a quadrupole and we include or not the ef-
fect of the density stratification. For each configurations we vary
the Lundquist and the contraction Reynolds numbers to study
the effect of the amplitudes of the initial poloidal field and of the
contraction. To help understand physically our numerical results
we also performed simulations where the contraction term is ar-
tificially removed from the induction equation, thus preventing
the advection of the magnetic field by the contraction velocity
field. All the relevant simulations and their associated parame-
ters are listed in Table 1.
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7.1. Unsteady evolution

Before we focus on the steady states, we start with a brief de-
scription of the unsteady phase.

Figure 2 illustrates for a particular run the typical evolution
of the toroidal field Bφc (middle panel) and of the normalised
differential rotation δΩc = (Ωc −Ω0) /Ω0 (right panel) at some
fixed locations in the domain (black points in the left panel). The
run corresponds to a dipolar field in a viscous regime without
advection of the field lines (run D5 in Table 1). We observe that
as soon as the contraction produces a differential rotation, the
initially zero toroidal field linearly grows by the Ω-effect. Af-
ter ∼ 1 τAp , it saturates because the amplification of the toroidal
field produces a Lorentz force that back-reacts on the differen-
tial rotation thus counteracting further Ω-effect. This leads to the
propagation of Alfvén waves along the poloidal field lines illus-
trated by the oscillations of the control points in Fig. 2. As these
waves oscillate independently from each other, they quickly get
out of phase. This builds gradients of the toroidal magnetic field
and of the differential rotation on sufficiently small scales so that
they can be efficiently dissipated by the diffusion processes: this
is the so-called phase mixing mechanism (see Heyvaerts & Priest
(1983) or Cally (1991)). In the absence of a process forcing
the differential rotation this would lead to a uniformly rotating
steady state.

7.2. Steady state in the viscous regime with a dipolar field

In this section we investigate, in the viscous regime and for an
initial dipolar field, the steady states obtained after the Alfvén
waves have dissipated and the contraction has imposed some
level of differential rotation. These states are actually quasi-
steady because the initial poloidal field continues to slowly de-
crease through magnetic diffusion. Three parameters are fixed
Pr (N0/Ω0)2 = 104, E = 10−4 and Pm = 102, while the con-
traction Reynolds number Rec varies between 10−1 to 5 and
Lundquist number between 103 and 5 · 104 (see details in Table
1). The anelastic simulations have been performed with a density
contrast ρi/ρ0 = 20.85.

Representative results are displayed in Fig. 3, for a case with-
out advection of the field lines at Rec = 1 and Lu = 5 · 104 (first
two panels, run D5 of Table 1), and for a case with advection at
Rec = 1 and Lu = 104 (last two panels, run D13 of Table 1). From
this figure we clearly distinguish two magnetically decoupled re-
gions with different levels of differential rotation. In the first re-
gion the poloidal field lines are connected to the outer sphere
and the flow is in quasi-solid rotation. In the second region, ei-
ther the poloidal field lines loop-back on themselves inside the
spherical shell (case without advection of the field lines) or they
loop-back on the inner sphere (case with advection of the field
lines). As in Charbonneau & MacGregor (1993) we shall refer
to these particular regions as the "dead zone" (DZ). The level
of differential rotation is always significant in the DZs. With
contraction of the field lines, the maximum differential rotation
max (δΩ(r, θ)/Ω0) = max ((Ω(r, θ) −Ω0) /Ω0) is 30%, while it is
reduced to ∼ 1% in the other case. The snapshots of the toroidal
magnetic field (second and fourth panels in Fig. 3), show the
presence of two anti-symmetric lobes of toroidal field in both
hemispheres due to the Ω-effect acting on the dipolar poloidal
field. Interestingly the DZs are surrounded by a region of strong
toroidal field. This corresponds to a Shercliff boundary layer
(Shercliff 1956) that develops between two magnetic regions that
are forced to rotate at different rates. Indeed in our simulations,
the first poloidal line delimiting the DZ and the neighbouring

lines connected to the outer sphere are forced to rotate differen-
tially and a layer involving strong toroidal fields accommodates
this jump in rotation rate. We verified that, as expected (Roberts
1967), the thickness of this Shercliff boundary layer scales with
the inverse of the square root of the Hartmann number defined
by Ha = Lu/

√
Pm. When we prevent the advection of the field

lines (first panel in Fig. 3), a second Shercliff layer is visible at
the separation between the region where the field lines are con-
nected to both the outer and inner spheres, and the region where
they are connected to the outer sphere only.

To give a more detailed description of the dynamics outside
and inside the DZ, we compare in Fig. 4 the relative amplitudes
of the different terms of the AM balance Eq. (11). From the first
two panels of this figure, we see that outside the DZ, the quasi-
steady configuration is characterised by a balance between the
contraction term and the Lorentz force, that is:

−2 sin θΩ0
V0r2

0

r2 =
1

µ0ρ0

[
Bθ

r sin θ
∂

∂θ

(
sin θBφ

)
+

Br

r
∂

∂r

(
rBφ

)]
.

(34)

On the contrary, the last two panels of Fig. 4 show that inside the
DZ the viscous term balances the contraction term, thus leading
to

ν

[
r
∂2

∂r2

(
δΩ

Ω0

)
+ 4

∂

∂r

(
δΩ

Ω0

)
+

1
r
∂2

∂θ2

(
δΩ

Ω0

)
+

3 cot θ
r

∂

∂θ

(
δΩ

Ω0

)]

=
−2V0r2

0

r2 ,

(35)

where only the linear part of the contraction term has been re-
tained, an approximation only valid if δΩ/Ω0 � 1. In the fol-
lowing two sub-sections the differential rotation resulting from
these two different balances is analysed.

7.2.1. Region outside the dead zone

Although at first glance the flow seems to be in solid rotation
outside the DZ, there is a rotation rate jump across a boundary
layer at the outer sphere as well as a residual differential rotation
along the poloidal field lines.

By rescaling the colour range of Fig. 3, the top panel of Fig.
5 indeed shows that outside the DZ, the differential rotation be-
tween the interior flow and the outer sphere (Ω(r, θ) −Ω0)/Ω0)
is ∼ 6 · 10−4. In order to understand that value we first estimate
the toroidal field amplitude outside the DZ using Eq. (34). As-
suming Br ∼ Bθ ∼ B0 and r ∼ r0, we get

Bφ
B0
≈

r0µ0ρ0V0Ω0

B2
0

=

(
Pm

Lu

)2 Rec

E
. (36)

This estimate is confirmed in Fig. 6 where Bφ/B0 determined at
a particular location, θ = π/6, r = 0.65 r0, is compared with the
right-hand side of Eq. (36) for the runs D1 to D7.

This toroidal field is however unable to naturally match the
vacuum condition imposed at the outer sphere (Bφ = 0 at r = r0).
This is done across a H−1

a thickness magnetic boundary layer
known as an Hartmann boundary layer. This layer is analysed in
Appendix B and the conclusion is that the O

(
P2

mRec/EL2
u

)
jump
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Fig. 2: Left panel: meridional cut of the norm of the poloidal magnetic field. The black dots show the position of 5 control points
located on different field lines. In the other two panels the temporal evolution of these points is followed during 20 τAp , both for
the toroidal field Bφc (middle panel) and the normalised differential rotation ∆Ωc/Ω0 (right panel). The parameters are E = 10−4,
Pr (N0/Ω0)2 = 104, Rec = 1, Lu = 5 · 104 and Pm = 102 (run D5 of Table 1).

Fig. 3: Meridional cuts of the rotation rate normalised to the value at the outer sphere (first and third panels) and toroidal field (second
and fourth panels), in the quasi-steady state. In black lines are also represented the poloidal field lines (first and third panels) and
the streamlines associated with the electrical-current function defined in Appendix A (second and fourth panels). The dotted (solid)
lines then correspond to an anticlockwise (clockwise) current circulation. In the first two panels the contraction does not advect the
poloidal field lines and the quasi-steady state is achieved after ∼ 0.04 τc (i.e. ∼ 20 τAp , see Fig. 2). In the last two panels such an
advection is allowed and the quasi-steady configuration is reached after ∼ 1 τc (i.e. after ∼ 100 τAp for this simulation). For these
two cases the Lundquist numbers are respectively Lu = 5 · 104 and Lu = 104 (runs D5 and D13). The other parameters are identical,
namely Pr (N0/Ω0) = 104, E = 10−4, Rec = 1 and Pm = 102.

on Bφ/B0 induces a O
(√

Pm Rec/Lu

)
jump on the differential ro-

tation ∆Ω/Ω0 across the layer. This last scaling is confirmed in
Fig. 7 by computing ∆Ω/Ω0 at a particular location for the runs
D1 to D7.

Figure 5b shows a zoom on the zone delimited in black lines
in Fig. 5a. It illustrates the residual differential rotation that ex-
ists along each poloidal field lines. We note it as ∆Ω pol/Ω0. Such
a contrast of differential rotation is at odds with Ferraro’s law of
isorotation (Ferraro 1937) requiring a constant angular veloc-
ity along each poloidal field line. Ferraro’s isorotation state is
indeed found in our cases with no contraction in the induction
equation. However, taking field advection into account, the Ω-

effect term can be balanced by the radial advection term in the
induction equation, that is:

V f (r)
∂

∂r

(
Bφ
r

)
= sin θ

(
#»
B p ·

#»

∇
)
δΩ. (37)

Using the order of magnitude of the toroidal field derived in Eq.
(36) together with Eq. (37), we end up with an estimate of this
differential rotation

∆Ω pol

Ω0
≈

(
RecPm

Lu

)2

=

(
τAp

τc

)2

. (38)

Figure 8 shows the differential rotation taken between two ends
of a poloidal field line as a function of the right-hand side of Eq.
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Fig. 4: 2D maps comparing the relative importance of different azimuthally projected quantities: the Lorentz force with the con-
traction (first two panels) and the viscous term with the contraction (last two panels). The runs where the contraction term has been
removed from the induction equation are presented in the first and third panels. In the other two, the effect of the contraction on the
magnetic field is taken into account. Parameters are the same to those of Fig. 3.

(38), for various Rec and Lu respectively ranging from 10−1 to 2
and from 5 · 103 to 104. We can see that the level of differential
rotation along a field line is indeed consistent with our estimate.

Another consequence of the force balance Eq. (34) is that
the toroidal field amplitude slowly increases over time. Figure 9
illustrates this by showing that in order to counteract the mag-
netic diffusion of the poloidal field (blue curve) and maintain
this balance (black curve), the toroidal field amplitude is forced
to increase (green curve). A similar situation was reported by
Charbonneau & MacGregor (1993) where the magnetic stresses
were in their case balanced by a wind torque.

7.2.2. Dead zone

We now turn to investigate the dynamics of the DZ. We already
found that in this region the dominant balance is between the
contraction and the viscous effects and is given by Eq. (35) in
the linear regime ∆Ω/Ω � 1. This implies that the order of mag-
nitude of the differential rotation in the DZ, denoted ∆Ω DZ/Ω0,
is ∼ L DZV f (r)/ν, where L DZ is a typical lengthscale of the DZ.
While the magnetic field does not explicitly enter in this expres-
sion, it is of prime importance because its interaction with the
contraction determines the shape and the location of the DZ.

The differences observed in Fig. 3 concerning the level of
differential rotation between the simulations with and without
contraction of the field lines can thus be explained by the loca-
tion and size of the DZ. Indeed, in the case without field line
contraction, the DZ is smaller and located closer to the outer
sphere, that is in a area where the contraction velocity is weaker,
which leads to a smaller level of differential rotation. Another
difference between these two cases is the time taken to reach
the stationary solution. As this time is the viscous time based on
the size of the DZ, it is not surprising that the stationary state is
reached much more rapidly when the DZ occupies a small frac-
tion of the spherical shell. Note that in the case with contraction
of the field lines, the viscous time is of the same order as the
contraction time τc because we are in the regime ∆Ω/Ω ∼ 1.

It is also possible to obtain a more precise determination of
the DZ differential rotation, by deriving an approximate analyti-
cal solution of Eq. (35). To this end, the DZ is first assimilated to
a conical domain, r ∈

[
riDZ , r0

]
, θ ∈ [−θ0, θ0], outside of which

the flow is in solid rotation. In the case where the domain con-
nects to the inner sphere, we adopt a stress-free condition on the
azimuthal velocity field at r = ri. We then neglect the last term
of the left-hand side in Eq. (35) as we found in our simulations
that its contribution is small, particularly at low latitude. The ho-
mogeneous problem, which is separable in two radial and latitu-
dinal eigenvalue sub-problems, allows us to construct a basis of
orthogonal eigenfunctions that satisfy the boundary conditions
on the conical domain. The details of the method are provided in
Appendices C.1 and C.2

In the case where the contraction does not advect the field
lines, the approximate analytical solution takes the following
form

δΩ(r, θ)
Ω0

= Rec

∞∑
n=1

∞∑
k=1

Ank

( r0

r

)3/2
sin




nπ

ln
(

riDZ

r0

)
 ln

(
r
r0

)
cos

((
(2k − 1) π

2θ0

)
θ

)
,

(39)

wherein the expression of the coefficient Ank can be found in
Appendix C.1.
This solution computed for a chosen conical domain is com-
pared in Fig. 10 with the results of the numerical simulations
performed at various Rec and Lu respectively ranging from 10−1

to 5 and from 5 · 103 to 5 · 104. A good agreement is found
between the numerical and analytical solutions. The differential
rotation scales as Rec and this was expected because the condi-
tion δΩ/Ω � 1 for the linear approximation of the contraction
term is fulfilled in the simulations. We also find that the differ-
ential rotation is almost independent of the initial amplitude of
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(a)

(b)

Fig. 5: Top panel (5a): meridional cut of the normalised rotation
rate. This is the third panel of Fig. 3 presented on a smaller rota-
tion rate scale. As a result, the DZ is saturated in colour. Bottom
panel (5b): enlargement of the black-delimited zone displayed
in the top panel. In each panels the poloidal field lines are also
represented (black lines). For the sake of clarity, every other field
line is plotted in red in the bottom panel. Parameters are the same
as in Figs. 3 and 4.

the magnetic field: an increase of Lu of one order of magnitude
causes only a small change on ∆ΩDZ/Ω0. This is consistent with
the fact that, in the regime considered here, the shape and loca-
tion of the DZ do not depend on the magnetic field. We rather
observe that a higher magnetic field affects the rotation rate out-
side the DZ, or equivalently the differential rotation outside the
DZ. Again this is expected as the jump in rotation rate across the
outer sphere Hartmann layer decreases with the field amplitude.

When the contraction term is introduced in the induction
equation, the solution of Eq. (35) becomes

δΩ(r, θ)
Ω0

= Rec

∞∑
n=1

∞∑
k=1

Ank

( r0

r

)3/2
sin

(
1
2

√
|9 + 4µn| ln

(
r
r0

))

cos
((

(2k − 1) π
2θ0

)
θ

)
,

(40)

Fig. 6: Toroidal field Bφ normalised to the initial amplitude of
the poloidal field B0 as a function of (Pm/Lu)2 Rec/E at the par-
ticular location θ = π/6 and r = 0.65 r0. The different sym-
bols correspond to the different runs D1 to D7 of Table 1 (no
contraction term in induction equation) namely, Rec = 10−1,
Lu = 104 (circle); Rec = 10−1, Lu = 5 · 104 (square); Rec = 1,
Lu = 5 ·103 (hexagon); Rec = 1, Lu = 104 (up triangle); Rec = 1,
Lu = 5 · 104 (pentagon); Rec = 5, Lu = 104 (down triangle) and
Rec = 5, Lu = 5 · 104 (diamond). The other parameters are fixed
to E = 10−4, Pr (N0/Ω0)2 = 104 and Pm = 102.

Fig. 7: Normalised differential rotation between a
point outside the DZ and the outer sphere, ∆Ω/Ω0 =
(Ω(r = 0.65 r0, θ = π/12) −Ω0) /Ω0, plotted as a function
of
√

PmRec/Lu for the runs D1 to D7. The symbols are the same
as in Fig. 6.

where the expressions of the coefficients Ank and µn are given in
Appendix C.2.
This solution computed for a chosen conical domain is com-
pared in Fig. 11 with the numerical results obtained at various
Rec and Lu. As previously, the initial amplitude of the mag-
netic field causes only small changes on the level of differential
rotation. However, some discrepancies are visible. First of all,
the numerical curves obtained at different Rec do not overlap,
which indicates that for these higher levels of differential rota-
tion (δΩ/Ω0 ∼ 30%) the contraction term can no longer be lin-
earised, a necessary condition to derive the analytical solution. A
second limitation is the assumed conical shape of the DZ. This
shape is indeed more representative of the actual DZ for run D14
performed at Rec = 2, where we can observe that the analyti-
cal solution tends to reproduce the expected differential rotation,
than for simulations D10 to D13 obtained at Rec = 0.5 and 1.
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Fig. 8: Normalised differential rotation along a poloidal field line
∆Ω pol/Ω0 as a function of (RecPm/Lu)2. This quantity is esti-
mated between two sufficiently separated points along a field
line for the runs D8 and, D10 to D14 of Table 1. The correspon-
dences between parameters and symbols are as follows: Circle:
Rec = 10−1, Lu = 104; Triangle: Rec = 5 · 10−1, Lu = 5 · 103; Di-
amond: Rec = 5 · 10−1, Lu = 104; Square: Rec = 1, Lu = 5 · 103;
Pentagon: Rec = 1, Lu = 104; Hexagon: Rec = 2, Lu = 104.
The other parameters are E = 10−4, Pr (N0/Ω0)2 = 104 and
Pm = 102.

Fig. 9: Temporal evolution of different quantities followed over a
period of 300 τAp : the toroidal field normalised to the initial am-
plitude of the poloidal field and rescaled by L2

uE/P2
mRec (green),

the norm of the poloidal field normalised to the initial amplitude
of the poloidal field (blue) and the ratio between the linear con-
traction term

(
2 sin θΩ0V f (r)

)
and the Lorentz force projected

into the azimuthal direction (black). These quantities are evalu-
ated at a particular location (θ = π/6 and r = 0.65 r0). For this
simulation the contraction term has been removed from the in-
duction equation but the results are exactly the same when it is
included. The parameters are Rec = 1, Lu = 5 · 104, Pm = 102,
E = 10−4 and Pr (N0/Ω0)2 = 104 (run D5 of Table 1).

7.2.3. Effect of the density stratification

We have performed simulations in the anelastic approximation
for a fixed density contrast ρi/ρ0 = 20.85. Two typical results
are presented in Fig. 12 at Rec = 1, Lu = 105 and Rec = 5,
Lu = 5 · 104 (left and right panels respectively). For these runs
where the contraction advects the field lines, we find again two
separate regions, with a differential rotation still mostly located
in the DZ. This zone is now more extended in latitude compared

Fig. 10: Equatorial differential rotation as a function of radius
when the contraction term is removed from the induction equa-
tion. Numerical solutions (runs D1 to D7) are plotted in colour
at Rec = 10−1 (red), Rec = 1 (blue) and Rec = 5 (purple), for
various Lundquist numbers ranging from 104 to 5 · 104 (from
the lightest to the darkest). For Rec = 1 an additional simu-
lation is presented at Lu = 5 · 103. The curves are rescaled
by Rec then compared to the analytical solution Eq. (39) dis-
played in black dashed lines. The other parameters are E = 10−4,
Pr (N0/Ω0)2 = 104 and Pm = 102.

Fig. 11: Same as Fig. 10 but for cases where contraction acts on
the field lines. The simulations presented here are the runs D10
to D14 of Table 1 performed at Rec = 5 · 10−1 (green), Rec = 1
(blue) and Rec = 2 (purple). For all these cases Lu = 104 but
for Rec = 5 · 10−1 and 1, additional simulations are shown at
Lu = 5 · 103 in dash-dot lines. The analytical solution Eq. (40) is
displayed in black dashed lines.

to the Boussinesq case and the main difference between the cal-
culations at two different Rec lies in the level of differential rota-
tion in the DZ. Indeed, when this level in the left panel is com-
pared to its Boussinesq counterpart in the third panel of Fig. 3
we notice that it has been divided by a factor ∼ 3. This is ex-
plained by the density stratification effect on the contraction ve-
locity field. Indeed, as we already found in (Gouhier et al. 2021),
the normalised differential rotation ∆Ω DZ/Ω0 resulting from the
balance between the viscous and contraction effects is weighted
by the inverse of the background density profile:

∆Ω A
DZ

Ω0
≈

(∫ ri/r0

1

ρ0

ρ
d (r/r0)

)
∆Ω B

DZ

Ω0
, (41)
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Fig. 12: Meridional cuts of the normalised rotation rate in two
anelastic cases with ρi/ρ0 = 20.85. The poloidal field lines are
represented in black lines. For these simulations the contrac-
tion term is included in the induction equation. In the first panel
Rec = 1 and Lu = 105 (run D18 of Table 1), and in the second
one Rec = 5 and Lu = 5 · 104 (run D20 of Table 1). The other
parameters are Pr (N0/Ω0) = 104, E = 10−4 and Pm = 102.

where the index A stands for "anelastic" and B for "Boussinesq".
For ρi/ρ0 = 20.85 and r ∈ [ri = 0.3; r0 = 1], using the character-
istic amplitude of the differential rotation given in the third panel
of Fig. 3, we obtain ∆Ω A

DZ/Ω0 = 0.095, in agreement with the
rotation rate shown in the left panel of Fig. 12. A good estimate
of the rotation rate displayed in the right panel is then readily
obtained by multiplying this result by Rec.

7.3. Quadrupolar field in the viscous regime

We now consider an initial quadrupolar magnetic field as given
by Eq. (23) and displayed in the right panel of Fig. 1. The out-
come will be completely different as the differential rotation re-
sulting from the contraction is subject to an instability that will
be discussed in detail below.

Figure 13 displays typical states obtained after a contraction
timescale. The two left panels show a case without contraction
of the field lines while the two right panels correspond to simu-
lations where contraction is included in the induction equation.
At this stage, the similarities with the dipolar case are striking.
First we observe the quasi-solid rotation region outside the DZs.
When the advection of the field lines is prevented, these DZs
are located near the outer sphere while they connect to the in-
ner sphere when contraction is present. In addition, for a given
set of parameters, when the dipolar and quadrupolar cases are
compared with each other, the same levels of differential rotation
are found. For the runs presented here, the maximum amplitude
of the normalised differential rotation inside the DZs is again
∼ 30% when the contraction acts on the field lines and falls to
∼ 1% otherwise, similar to the cases presented in Fig. 3. By ob-
serving the second and fourth panels of Fig. 13 we note, again,
the presence of magnetic boundary layers namely, the Shercliff
layers separating the poloidal field lines constrained to rotate at
different rates, and the Hartmann layer at the outer sphere. How-
ever compared to the dipolar case, after ∼ 1 τc the quadrupolar
configuration is the seat of an axisymmetric instability.

The evolution of the maximum differential rotation is shown
in Fig. 14 where the different steps that will be described there-
after are highlighted. In particular, the differential rotation first
builds up before an instability starts to kick in at t ∼ 1 τc (red
dashed lines). Between ∼ 1 τc and ∼ 3.5 τc (blue dashed lines)
the instability grows, saturates and strongly modifies the flow
and field as we shall see later. Finally, after 3.5 τc, the configura-
tion evolves more smoothly until a final steady state is reached
at ∼ 4.7 τc (purple dashed lines).

7.3.1. Description of the instability

Figure 15 shows, in colour, the structure of the unstable modes
when the contraction does not act on the field lines (first panel)
and when it acts on them (second panel). In these meridional
cuts are also represented, in black, the contours of the latitu-
dinal shear ∂ ln Ω/∂θ. Dashed (solid) lines represent negative
(positive) values of this gradient. Contrary to the dipolar case,
we now have a region of negative shear in the Northern hemi-
sphere and positive shear in the South. As can be observed, this
is precisely at these locations that the perturbations grow. We
already note that this instability is not of the centrifugal type
because the shear in these regions is not strong enough, that is
|∂ ln Ω/∂ ln s| < 2. The figure also shows that the unstable modes
are characterised by small radial length scales and large horizon-
tal length scales which implies that the meridional motions are
predominantly horizontal. The last panel of Fig. 15 displays the
local evolution of the square of the latitudinal velocity field at
the fixed points marked on the second panel (in light blue, blue
and black). We can see that the kinetic energy of the perturba-
tions grows exponentially for about ∼ 20 τAp before saturation
occurs. This time interval corresponds to the linear phase of the
instability. The oscillating behaviour that adds to the exponential
growth is due to the fact that the perturbations propagate.

Growth rates have been determined from these plots. Their
values normalised by the product of the surface-averaged shear
parameter < q >= 1/S

!
(∂ ln Ω/∂θ) dS to the mean local rota-

tion rate are listed in Table 2. We observe that when the contrac-
tion Reynolds number is multiplied by two, the shear rate and the
growth rate are both doubled. This shows that the growth rate of
the instability seems to be proportional to the shear rate. More-
over, for the simulation Q5 performed at higher Lu = 5 · 104,
the instability is not triggered, clearly indicating that a strong
enough poloidal field has a stabilising effect. Finally, while runs
Q4, Q10 and Q11 carried out for Lu = 104 are unstable, runs
Q1 and Q8 performed for the same Lu, but at lower Rec, are
stable. This shows that, at a lower shear rate, a lower poloidal
field is required to stabilise the flow. These findings, namely the
requirement that the rotation decreases away from the rotation
axis and the facts that the growth rates are proportional to the
shear and that stabilisation occurs above a certain magnetic ten-
sion are all in agreement with an MRI-type instability (Balbus &
Hawley 1991).

Our numerical results also exhibit more subtle effects that
are not accounted for in the local WKB approach of the standard
MRI (SMRI) (Balbus & Hawley 1991, 1994; Menou et al. 2004).
First, the growth rates determined in Table 2 are significantly
lower than the maximum growth rate σmax = |q|Ω/2, where q =
d ln Ω/d ln s, predicted by these studies (e.g. Balbus & Hawley
(1994)). Second, a comparison between runs Q9 and Q10 shows
that the growth rate increases with Lu whereas the predictedσmax
does not depend on the poloidal field. Finally, as noted earlier the
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Fig. 13: Same as Fig. 3 but for the initially quadrupolar magnetic field. In the first two panels Lu = 5 · 104 while Lu = 104 in the last
two. The other parameters are Rec = 1, E = 10−4, Pr (N0/Ω0)2 = 104 and Pm = 102 (runs Q2 and Q10 of Table 1).

Fig. 14: Maximum value of the normalised differential rotation
max (∆Ω/Ω0) as a function of the contraction timescale as de-
fined in Eq. (12). The main evolution steps are highlighted by
coloured dashed lines: the red line corresponds to the start of the
exponential growth phase, orange to the time at which the in-
stability saturates thus marking the beginning of the non-linear
evolution. Then blue marks the start of the post-instability evo-
lution and finally purple denotes the time at which the hydrody-
namic steady state is reached. Parameters are Rec = 1, Lu = 104,
E = 10−4, Pr (N0/Ω0)2 = 104 and Pm = 102 (run Q10 of Table
1, contraction term in induction equation).

perturbations propagate in the domain while the phase velocity
of the modes is zero in the SMRI.

We now argue that these differences are due to the effect of
the stable stratification and to the presence of a toroidal field.
In Balbus & Hawley (1994) the maximum growth rate is deter-
mined by assuming a zero latitudinal wavenumber. This avoids
any stabilising effect of the stratification because the buoyancy
force has no effect on purely horizontal motions. It follows that
the most unstable radial scale is inversely proportional to the
poloidal field amplitude and does not depend on the stable strat-
ification. Even if the unstable motions found in our simula-
tions are predominantly horizontal, assuming a zero latitudinal
wavenumber is too extreme because our background flow is not

uniform in latitude so that the perturbation must have and indeed
has a finite wavelength in this direction. As a consequence, the
stable stratification is expected to play a role in determining the
most unstable radial lengthscale and the associated maximum
growth rate. We indeed found that the radial wavenumbers of the
unstable modes are always larger the theoretical value from Bal-
bus & Hawley (1994) and that it is very little dependent on the
amplitude of the poloidal field. The effect of the stable stratifica-
tion may thus potentially explain why the growth rates found in
our simulations are significantly smaller than σmax. We note that
the thermal diffusion must be taken into account to consider the
effect of the stable stratification. Indeed, we estimated that the
thermal diffusion time scale τ∗κ = κ−1/

(
k2

r + k2
θ

)
associated with

the observed unstable modes is about one order of magnitude

smaller than the buoyancy time scale τ∗B =

√
k2

r + k2
θN−1/kθ,

which implies that thermal diffusion will play an important role
in determining the amplitude of the buoyancy force (e.g., Lig-
nières et al. (1999)).

To interpret the increase of the growth rate with Lu (runs
Q9 and Q10), we first recall that in the context of the SMRI
the toroidal field is assumed to be zero. This is not the case in
our simulations where, according to Eq. 34, the amplitude of the
stationary toroidal field decreases when the initial poloidal field
(and thus Lu) increases. As reviewed in Rüdiger et al. (2018),
introducing a toroidal field leads to the so-called helical MRI
(HMRI) (Hollerbach & Rüdiger 2005). Following the dispersion
relation derived by Kirillov et al. (2014), the toroidal field can
be either stabilising or destabilising depending on the sign of
VAφ/s = Bφ/

(
r sin θ

√
µ0ρ0

)
. Moreover, the HMRI differs from

the SMRI through the non-vanishing phase velocity of the un-
stable modes and a different phase shift between the perturbed
fields. This phenomenon has been mentioned for the first time
by Knobloch (1992) and then found experimentally by Stefani
et al. (2006) and in numerical simulations (Petitdemange et al.
2013).

In our simulations the quantity VAφ/s changes sign in the
region where the instability is triggered so that the WKB-type
analysis of Kirillov et al. (2014) is not directly conclusive. Our
results nevertheless would imply that the toroidal field has a sta-
bilising effect since the growth rate increases when the intensity
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Fig. 15: First two panels: snapshots of the latitudinal velocity field Uθ taken during the developing of the instability, at t = 14.1 τAp

when the contraction does not act on the field lines (first panel) and at t = 127.4 τAp when it does (second panel). In these cuts are
also represented the contours of the latitudinal shear ∂ ln Ω/∂θ in black, with dashed lines corresponding to a negative shear and
full lines to a positive one. In the second panel, three control points (in light blue, blue and black) are chosen at the location where
the instability grows. Third panel: temporal evolution of the square of the latitudinal velocity field at these selected points (with the
same colour code), as a function of the Alfvén poloidal time. In each subplot a coloured straight line is also presented as the result
of a linear regression used to deduce a growth rate associated with the instability. The parameters are those of the runs Q4 and Q10
of Table 1 namely, Rec = 5 (first panel) and Rec = 1 (two last panels), with E = 10−4, Pr (N0/Ω0)2 = 104, Pm = 102 and Lu = 104.

of Bφ decreases. As noted earlier, we did observe that the pertur-
bations propagate in our simulations. Their phase velocity V phase
normalised by the contraction velocity field are listed in Table 3.
As expected, comparing the runs Q10 and Q9, the phase velocity
is higher when the toroidal field is higher.

Fig. 16: Perturbed fields: latitudinal velocity field (purple), lati-
tudinal (green) and azimuthal (blue) magnetic fields as a function
of radius at θ ≈ 2π/5 (i.e. at latitude π/10). The parameters are
Rec = 1, Lu = 104, E = 10−4, Pr (N0/Ω0)2 = 104 and Pm = 102

(run Q10 of Table 1).

Moreover, contrary to a SMRI, we observe neither exact phase
quadrature between the latitudinal velocity perturbation and the
latitudinal and azimuthal magnetic perturbations, nor exact op-
position phase between the perturbed latitudinal and toroidal
magnetic fields (Petitdemange et al. 2013). This is visible in Fig.
16 where the different perturbed quantities, the latitudinal veloc-
ity (purple) as well as the latitudinal (green) and azimuthal (blue)
magnetic fields are plotted as a function of the radius.

We conclude that the instability triggered in the DZ of the
quadrupole is of the MRI-type and that its full description would
require a detailed modelling of the effects of the stable stratifica-
tion and of the toroidal field.

7.3.2. Non-linear evolution

After the exponential growth phase, the evolution becomes non-
linear and the instability saturates. Figure 17 displays the flow
structure obtain at ∼ 3 τc for the run Q10 (Rec = 1, Lu = 104),
through the rotation rate (colour) and the meridional circulation
(black) in the left panel, as well as the norm of the poloidal field
(colour) and its associated field lines (black) in the right panel.
We observe that the instability proceeds via a multi-cellular
meridional circulation, radially confined by the stable stratifica-
tion and latitudinally extended in both hemispheres. From Fig.
17 we see that the poloidal field lines (right panel) are dragged
around by this meridional circulation everywhere it is present
(left panel), and then warped. The poloidal field thus behaves
like a passive scalar advected and mixed by the multi-cellular
circulation. This process creates small scales on which the mag-
netic diffusion can efficiently act to dissipate the poloidal field.

In Fig. 18 we compare the evolution of the norm of the
poloidal field in an unstable case (in black) and in a stable case
(in blue). The field norm is determined either through a volume
average (solid line) or at a fixed point (displayed in black in Fig.
17) in the middle of the unstable region (dashed lines). The slope
of these curves enables us to estimate a diffusion rate, and so a
diffusion lengthscale, of the poloidal field. For the unstable con-
figuration, this rate is determined during the saw-tooth evolution
ranging from ∼ 2.25 τc to ∼ 3.5 τc. By denoting ωstab = η/L2

stab
and ωunst = η/L2

unst the diffusion rates of the stable and unstable
runs respectively, we obtain ωunst/ωstab ≈ 42, hence a diffusion
of the poloidal field 42 times faster in the unstable case. In other
words, the motions driven by the instability induce an effective
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Fig. 17: Left panel: meridional cut of the normalised differential
rotation δΩ/Ω0 (colour) with the streamlines associated with the
meridional circulation

#»
U = Ur

#»e r + Uθ
#»e θ (black contours). The

dashed (solid) lines correspond to an anticlockwise (clockwise)
circulation. Right panel: meridional cut of the normalised norm
of the poloidal magnetic field

∥∥∥ #»
B p

∥∥∥ /B0 (colour) and its associ-
ated field lines (in black). The fixed point located at r = 0.47 r0
and θ ≈ 2π/5 corresponds to the location where the norm of the
poloidal field is plotted in Fig. 18 for a stable and an unstable
case. These snapshots have been taken at t = 3 τc. Parameters
are Rec = 1, Lu = 104, E = 10−4, Pr (N0/Ω0)2 = 104, Pm = 102

(run Q10 of Table 1).

Fig. 18: Temporal evolution of the norm of the poloidal magnetic
field normalised to B0, as a function of the contraction timescale
τc. Plain curves represent a volume-averaged evolution and the
dashed-dotted ones a local evolution at the fixed point displayed
in black in Fig. 17 (r = 0.47 r0 and θ ≈ 2π/5). The stable and
unstable configurations, Rec = 0.5 and 1, are respectively dis-
tinguished by their blue and black colours. The other parameters
are E = 10−4, Pr (N0/Ω0)2 = 104, Pm = 102 and Lu = 104 (runs
Q8 and Q10 of Table 1).

diffusion at a lengthscale 6.5 smaller than the diffusion acting in
the stable case (Lstab/Lunst = 6.5).

Although we shall see below that the differential rotation in-
creases as a result of the instability, the toroidal field does not
grow through the Ω-effect because the poloidal field is too weak

in this phase. Then, the toroidal field experiences a diffusive-like
decay, similar to the poloidal field.

7.3.3. Post-instability description

By destroying the poloidal field, the instability allowed a recon-
figuration of the flow structure. This is shown at t = 3.5τc in the
first two panels of Fig. 19 then at t = 4.66 τc in the last two. From
the first panel, we observe that the maximum level of differential
rotation is now three times higher than before the instability. The
reason is as follows: from a DZ to another, the large-scale struc-
ture of the poloidal field has been destroyed by the instability.
As a result, even if a significant level of toroidal field still exists
in this region, as displayed in the second panel of Fig. 19, the
Lorentz force remains weak between the two DZs. The domain
within which the contraction is balanced by the viscous effects
thus becomes larger and, as expected, the differential rotation
increases. By contrast, the poloidal field amplitude is still sig-
nificant near the rotation axis and the Lorentz force imposes a
very weak differential rotation O

(
(RecPm/Lu)2

)
(see Sect. 7.2.1)

in this region.
Coming back to the numerical results presented in Fig. 19.

The first two panels show that the magnetic topology has also
completely changed after the development of the instability. A
comparison between the third panel of Fig. 13 and the first panel
of Fig. 19 shows that the field lines which looped back on them-
selves before the instability have now been moved towards the
poles. In addition, the toroidal field is now very weak close to
the outer sphere. An Hartmann layer is thus no longer needed to
connect to the vacuum condition at the outer sphere. Likewise,
the Shercliff layers have been removed with the dissipation of the
poloidal field. Interestingly, we note that the new magnetic con-
figuration, characterised by its positive lobe of toroidal field lo-
cated near the rotation axis in both hemispheres, is from now on
likely to be unstable to a non-axisymmetric instability of Tayler-
type (see e.g., Spruit (1999)).

After ∼ 4.66 τc, the third panel of Fig. 19 shows that the dif-
ferential rotation is mostly radial and occupies the whole shell.
As a consequence, its amplitude further increased. In Fig. 20 we
plotted in black dashed line the analytical solution correspond-
ing to the balance on the full sphere between the viscous and
contraction terms of Eq. (11). This solution, derived in Gouhier
et al. (2021), perfectly matches the numerical solution in blue,
thus showing that the hydrodynamic steady state is recovered. In
conclusion, the magnetic field now has a negligible effect on the
flow dynamics as supported by the fourth panel of Fig. 19 where
we can see that the amplitude of the toroidal field has been di-
vided by more than 10.

7.4. Steady state in the Eddington-Sweet regime

We now focus on the Eddington-Sweet regime (
√

E �

Pr (N0/Ω0)2 � 1) considering a dipolar or a quadrupolar field
as the pre-existing field. All simulations are performed in the
anelastic approximation and include the contraction term in the
induction equation. The contrast of density between the inner
and the outer spheres is fixed to 20.85, and the Ekman and mag-
netic Prandtl numbers are respectively equal to 10−5 and 102.
Our parametric study in this regime study consists in varying Rec
from 10−1 to 5 and Lu from 5 ·103 to 105 for Pr (N0/Ω0)2 = 10−2

and 10−1 (see details in Table 1).
We basically found three types of steady states: the first one

is characterised, as in the viscous case, by two magnetically de-
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Fig. 19: Meridional cuts of the normalised differential rotation δΩ/Ω0 and of the toroidal field Bφ obtained during the post-instability
evolution at ∼ 3.5 τc (first two panels), and when the hydrodynamic steady state is reached at ∼ 4.66 τc (last two panels). Black
contours represent either the poloidal field lines (first and third panels) or the streamlines associated with the electrical-current
function (second and fourth panels). Parameters are E = 10−4, Pr (N0/Ω0)2 = 104, Pm = 102, Rec = 1 and Lu = 104 (run Q10 of
Table 1).

Fig. 20: Normalised differential rotation δΩ/Ω0 as a function of
radius. The analytical solution derived by solving the balance
between the viscous and contraction terms in Eq. (11), is plotted
in black dashed lines. It is compared to the numerical solution
obtained at 4.66 τc and plotted in blue solid line. The parameters
used are the same as in Fig. 19.

coupled regions, one of them including a DZ where the contrac-
tion enforces a certain level of differential rotation. This state is
the most relevant in a stellar context because it is obtained for
the lowest values of τAp/τED and τAp/τc and these ratios are a
priori very small in magnetic contracting stars as discussed in
Sect. 6.1. As we increase these ratios, we find another type of
solution where the differential rotation and the meridional cir-
culation are no longer confined within the DZ while the field
topology is unchanged (for higher τAp/τED) and finally a state
where the advection of the poloidal field destroys the dead zone
and significantly reconfigures the magnetic field and the rotation
profile (for higher τAp/τc). In the following, these last two so-
lutions will be described briefly as they are thought to be less
relevant for our purpose, although physically interesting.

7.4.1. Meridional circulation and differential rotation confined
to the dead zone

Figure 21 displays the typical structure of the quasi-steady flows
and fields obtained for a dipolar (top row) or a quadrupolar
(bottom row) initial field. These simulations were performed at
Rec = 1, Lu = 105 and Pr (N0/Ω0)2 = 10−1 (runs D28 and Q13
of Table 1) and thus satisfy τAp/τED = 10−2 and τAp/τc = 10−3.
There are many similarities with the viscous case. From the
panels of the first column, we again observe two regions that
are magnetically decoupled. One occupies the major part of the
spherical shell and is in quasi-solid rotation while the other, the
DZ, exhibits a certain level of differential rotation. The ampli-
tude of this differential rotation is similar for the dipolar and
quadrupolar cases. We also note the presence of magnetic bound-
ary layers: the Hartmann layer at the outer sphere, and the Sher-
cliff layers wherever adjacent poloidal field lines are forced to
rotate differently, namely along the tangent cylinder and around
the DZ. As in the viscous case, the toroidal field is characterised
by a strong amplitude at these locations, as indicated by the pan-
els of the second column.

We also see major differences with the viscous regime. First,
although the contraction of the field lines is allowed, the DZ is
confined near the outer sphere, whether a dipolar or quadrupo-
lar field is initially imposed. This can be compared to the third
panels of Figs. 3 and 13 in the viscous regime where the DZ
was clearly advected towards the inner sphere. This difference
is attributed to the effect of the contraction-induced meridional
flow which now plays a significant role in the DZ advection.
This flow is illustrated in the fourth column of Fig. 21 display-
ing the norm (colour) and the streamlines (black) of the poloidal
velocity field

#»
Up = Ur

#»e r + Uθ
#»e θ. For an initial dipolar field,

this circulation is characterised by the presence of one cell of
anticlockwise (clockwise) circulation in the northern (southern)
hemisphere. This contraction-induced flow contributes to the to-
tal meridional circulation

#»
U tot

p =
(
Ur + V f

)
#»e r +Uθ

#»e θ displayed
in the third column. As seen in the two top right panels, the in-
duced flow inside the DZ tends to oppose contraction and the re-
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Fig. 21: Quasi-steady axisymmetric flow in the Eddington-Sweet regime when a dipolar (top row) or quadrupolar (bottom row) field
is initially imposed. Panels of the first column: rotation rate normalised to the top value (colour) and poloidal field lines (black).
Panels of the second column: toroidal field (colour) with the streamlines of the electrical-current function (black). Panels of the
third column: norm (colour) and streamlines (black) of the total meridional circulation

#»
U tot

p =
(
Ur + V f

)
#»e r + Uθ

#»e θ. Panels of the
fourth column: norm (colour) and streamlines (black) of the contraction-induced meridional circulation

#»
Up = Ur

#»e r + Uθ
#»e θ. The

dashed lines represent an anticlockwise electrical (panels of the second column) or fluid (panels of the third and fourth columns)
circulation while the solid lines correspond to a clockwise direction. Parameters are E = 10−5, Pr (N0/Ω0)2 = 10−1, Pm = 102,
Rec = 1, Lu = 105 and ρi/ρ0 = 20.85 (runs D28 and Q13 of Table 1).

sulting total circulation becomes very weak, thus preventing the
inward advection of the DZ. Outside the DZ, the total meridional
flow is approximately parallel to the poloidal field lines close to
the outer sphere, where the contraction velocity is maximum. In
the deeper regions close to the inner sphere, the advection of
poloidal field lines by the weaker contraction field is balanced
by magnetic diffusion.

For an initial quadrupolar field, we observe a strong circu-
lation around the DZ while inside the DZ the flow is predom-
inantly vertical, downwards (upwards) in the northern (south-
ern) hemisphere. Again, away from the DZ, the contraction-
induced meridional flow has only a negligible contribution to
the total meridional circulation. Finally, in contrast to the vis-
cous regime, for the parameters numerically reachable in this
study, the quadrupolar configurations are stable with respect to
MRI because the shear built in the DZs is not strong enough to
counteract the stabilising effect of the poloidal field. By compar-

ison, the contrast of differential rotation in run Q5 of the viscous
regime is ∼ 130 times larger and is not even unstable despite a
weaker Lu of 5 · 104.

In order to understand the flow dynamics inside and outside
the DZ, we now examine the force balance in the AM equation
Eq. (11), as was done in the viscous regime. The force ampli-
tudes are analysed in the 2D maps of Fig. 22 where we display
the ratio of the Lorentz force (left panel) and of the Coriolis force
(right panel) to the contraction. We can observe that inside the
DZ, the contraction is now balanced by the Coriolis force be-
cause the toroidal component of the magnetic field tends to zero
and the Lorentz force becomes negligible accordingly (see right
panel of Fig. 22). This implies that

Us = sin θ
V0ρ0r2

0

ρr2 . (42)
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Fig. 22: 2D maps comparing the relative importance of the
Lorentz (left panel) and Coriolis (right panel) forces to the con-
traction in the presence of a dipolar field. In each panel the
poloidal field lines are plotted in black. Parameters are the same
as in Fig. 21.

Here, contrary to the viscous case, the thermal diffusion weakens
the stable stratification and enables a contraction-driven merid-
ional circulation to exist. Inside the DZ, we also find that the
thermal balance

Ur
dS
dr

= κ

d ln ρ
dr

+
d ln T

dr

 ∂δS
∂r

+
#»

∇2δS
 , (43)

and the thermal wind balance

2rΩ0
∂Uφ

∂z
=

g0r2
0

Cpr2

∂δS
∂θ

, (44)

are both satisfied. According to Eq. (42), contraction then drives
a meridional circulation Us ∼ O

(
V f

)
which redistributes AM

on an Eddington-Sweet timescale. Note that the circulation
timescale τc can be quite different from the Eddington-Sweet
timescale. Indeed, as stated in Sect. 3, the ratio τED/τc is mea-
sured by the dimensionless quantity RecPr (N0/Ω0)2. In this nu-
merical study of the Eddington-Sweet regime, τED � τc because
Pr (N0/Ω0)2 � 1 and because large contraction Reynolds num-
bers are too difficult to reach numerically.

Outside the DZ, the timescale of AM transport by the Alfvén
waves is much shorter than the Eddington-Sweet timescale, and
the Alfvén waves impose their dynamics. The left panel of Fig.
22 thus shows that the Lorentz force balances contraction and
Eq. (34) holds, as in the viscous regime. In this case, a quasi-
isorotation state along the field lines is obtained, verifying:

V f (r)
[
∂

∂r

(
Bφ
r

)
−

Bφ
r

d ln ρ
dr

]
= sin θ

(
#»
B p ·

#»

∇
)
δΩ. (45)

As a result, the estimate of the characteristic amplitude of the
differential rotation along the field lines Eq. (38) still holds, ex-

cept that it must be weighted by
(∫ 1

ri/r0

ρ

ρ0
d (r/r0)

)−1

accounting

for the effect of the density stratification in the domain.

In the hydrodynamical case (Gouhier et al. 2021) we
showed that the characteristic amplitude of the steady dif-
ferential rotation resulting from the balance between the in-
ward AM transport by the contraction and the AM re-
distribution by the Eddington-Sweet circulation should be

O

(
Pr (N0/Ω0)2 Rec

(∫ 1
ri/r0

(ρ/ρ0) dr̃
)−1

)
. This global analysis

does not apply directly in the present situation where the DZ
is reduced to a small fraction of the spherical shell, con-
fined near the outer sphere. As in Sect. 7.2.2 and follow-
ing Oglethorpe & Garaud (2013), to account for the DZ
size and its effect on the differential rotation induced by the
Eddington-Sweet circulation we introduce the lengthscale LDZ =
0.1 r0. Because of the density stratification, the contraction
velocity is not very different between the outer and inner
spheres. Thus, after using Eq. (42) and the continuity equa-
tion we have Ur ≈ V0. Then from Eq. (43) we get δS ≈(
V0L2

DZ/κ
) (

dS /dr
)
. Injecting this estimate in Eq. (44) yields fi-

nally to ∆ΩDZ/Ω0 ≈
(
g(r)/Cp

) (
dS /dr

) (
V0r0/κΩ

2
0

)
(LDZ/r0)2 ≈

Pr (N0/Ω0)2 Rec (LDZ/r0)2, thus enabling us to recover the level
of differential rotation inside the DZ up to a factor two.

Fig. 23: Maximum contrast of differential rotation inside the DZ
as a function of Pr (N0/Ω0)2 Rec. The different symbols circle,
square, hexagon and triangle respectively correspond to the sim-
ulations performed at Rec = 10−1, 5 · 10−1, 1 and 2. The runs
carried out at Lu = 5 · 104 are presented in light blue and those at
Lu = 105 in blue. The other parameters are Pr (N0/Ω0) = 10−1,
E = 10−5, Pm = 102 and ρi/ρ0 = 20.85 (runs D21-24 and D27-
30 of Table 1).

In Fig. 23 we plotted the maximum amplitude of the differ-
ential rotation inside the DZ as a function of Pr (N0/Ω0)2 Rec
for the runs D21-24 and D27-30 of Table 1 performed with Rec
ranging from 10−1 to 2 (identified with symbols) and Lu from
5 · 104 (light blue) to 105 (blue). The other parameters are fixed
to Pr (N0/Ω0)2 = 10−1, E = 10−5, Pm = 102 and ρi/ρ0 = 20.85.
As expected, the maximum contrast of differential rotation fol-
lows a linear relation with Rec. Moreover, we also observe that
this level is almost independent of the Lundquist number, con-
sistent with the balance Eq. (42) inside the DZ. However, for
the highest contraction Reynolds number Rec = 2, we observe a
clear discrepancy between the runs performed at Lu = 5 ·104 and
Lu = 105.
This deviation can be attributed to the fact that, in the lower Lu
case, the magnetic tension no longer prevents the advection of
the magnetic field by the meridional flows. As shown in Fig. 24,
this produces a significant deformation of the DZ geometry and
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Fig. 24: Meridional cuts of the normalised differential rotation
δΩ/Ω0 (left panel) and of the normalised norm of the poloidal
field

∥∥∥ #»
B p

∥∥∥ /B0 (right panel). In black are also plotted the poloidal
field lines to highlight the DZ. The parameters are Rec = 2, Lu =
5 · 104, Pr (N0/Ω0) = 10−1, E = 10−5, Pm = 102 and ρi/ρ0 =
20.85 (run D38 of Table 1).

a related expulsion of the magnetic flux outside the DZ. This
phenomenon is discussed in more details below.

7.4.2. Meridional circulation and differential rotation not
confined to a dead zone

Simulations carried out at a smaller Pr (N0/Ω0)2 parameter (runs
D32-D39 of Table 1) or at higher Rec (runs D38, Q14, Q16
and Q17 of Table 1), that is at higher values of τAp/τED and
τAp/τc, exhibit different features. In the former case (smaller
Pr (N0/Ω0)2), the differential rotation is no longer confined to
the DZ as an AM redistribution by the Eddington-Sweet circula-
tion occurs outside the DZ. In the second case (higher Rec), the
amplitude of the meridional circulation is strong enough to warp
the DZ and expel the magnetic flux there. These two phenomena
are now discussed.

The left panel of Fig. 25 displays a meridional cut of the
quasi-steady differential rotation (in colour) obtained for Rec =
1, Lu = 5 · 104 and Pr (N0/Ω0) = 10−2 (run D36 of Table 1)
on which are represented the vector lines of the total meridional
velocity field as arrows and the poloidal field lines (in black).
Compared to the simulation shown in Fig. 21, the ratio τAp/τED

has been increased by a factor 20 (from 10−2 to 2 · 10−1). Actu-
ally, if local values of this ratio are considered, a value of order
1 can be reached, in particular in the vicinity of the DZ. This is
shown in the right panel of Fig. 25 that displays the distribution
of the ratio of the Eddington-Sweet time to the local Alfvén time.
In this regime, the differential rotation and the meridional circu-
lation have spread out away from the DZ while the poloidal field
lines, and thus the DZ, have not been affected by the circulation
flow.

Another regime is encountered at sufficiently high Rec, as
presented in Fig. 26. The left panel of this figure displays the
differential rotation in colour with the streamlines of the merid-
ional circulation in black. The right panel shows, in colour, the
norm of the poloidal field with the poloidal field lines in black.

Fig. 25: Meridional cut of the normalised differential rotation
δΩ/Ω0 (left panel) and 2D map comparing the Eddington-Sweet
timescale to the Alfvén timescale (right panel). This one is lo-
cally estimated such as τAp = r0

√
µ0ρ/

∥∥∥ #»
B p

∥∥∥. In these two pan-
els, the poloidal field lines are also plotted in black. In addition,
in the left panel, the vector lines of the total meridional velocity
field

#»
U tot

p =
(
Ur + V f

)
#»e r + Uθ

#»e θ are plotted as black arrows.
The parameters are Rec = 1, Lu = 5 · 104, Pr (N0/Ω0) = 10−2,
E = 10−5, Pm = 102 and ρi/ρ0 = 20.85 (run D36 of Table 1).

Fig. 26: Left panel: structure of the flow after ∼ 2 τED displayed
through the coloured contours of the differential rotation nor-
malised to the top value and the streamlines of the meridional
flow in black. Right panel: norm of the poloidal field normalised
to its initial value at the pole of the outer sphere in colour with
the poloidal field lines in black. The parameters are E = 10−5,
Pr (N0/Ω0)2 = 10−1, ρi/ρ0 = 20.85, Pm = 102, Rec = 3 and
Lu = 5 · 104 (run Q16 of Table 1).

We observe that this meridional circulation significantly warps
the DZ, thus leading to a reconfiguration of the magnetic field
and the differential rotation. Compared to the simulation shown
in the top panel of Fig. 21, the ratio τAp/τc has been increased by
a factor of 6 (from 10−3 to 6 · 10−3). This is apparently sufficient
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for the Lorentz force not to be able to confine the circulation in
the DZ. The magnetic field is then advected and partly dissipated
in the vicinity of the original DZ. The dissipation process is rem-
iniscent of the phenomenon of magnetic flux expulsion studied
by Weiss (1966), whereby an eddy advects the magnetic field to
such small scales that magnetic diffusion is efficient. We indeed
observe that the magnetic flux ends up being expelled from the
regions where the meridional circulation exists and the poloidal
field is found concentrated in free layers separating the quasi-
solid rotation region from the one in differential rotation.

8. Summary and conclusions

In this work we investigated the dynamics of a contracting ra-
diative spherical layer embedded in a large-scale magnetic field.
The aim was to determine the differential rotation that results
from the combined effects of contraction and magnetic fields.
The contraction is modelled through an imposed radial veloc-
ity field

#»
V f and the gas dynamics is modelled using either

the Boussinesq or the anelastic approximations. The paramet-
ric study has been guided by the results obtained without mag-
netic field (Gouhier et al. 2021) highlighting two hydrodynami-
cal regimes, namely the viscous regime in the strongly stratified
cases and the Eddington-Sweet regime in the weakly stratified
cases.

We find that the contracting layer first evolves towards a
quasi-steady configuration characterised by two magnetically
decoupled regions. In the first region all the poloidal field lines
connect to the outer sphere. The rotation is quasi-uniform in this
region because the contraction only allows very small deviations
from Ferraro’s isorotation law along the field lines and the outer
sphere rotates uniformly. The second region, called the DZ, is
decoupled from the first one as the poloidal field lines loop-back
on themselves or connect to the inner sphere. In addition, the
poloidal field amplitude vanishes at some point within the DZ. A
significant level of differential rotation can be produced in these
DZs, the inward AM transport by the contraction being balanced
either by a viscous transport or by an Eddington-Sweet circula-
tion. The exact amplitude of the differential rotation also depends
on the size, the shape and the location of the DZ.

In a second step, after a time of the order of the contrac-
tion time, the shear built in the DZ can trigger a powerful ax-
isymmetric instability that profoundly modifies the subsequent
evolution of the flow. Indeed, for an initial quadrupolar field in
the viscous regime, we observe that if the field strength is low
enough an MRI-type instability grows and produces a multi-
cellular meridional circulation organised at small scales in the
radial direction. This flow advects and eventually enables to ef-
ficiently dissipate the magnetic energy. The new field configura-
tion is strongly modified, and the differential rotation which is
no longer constrained to the DZ spreads to most of the spheri-
cal layer while its amplitude increases. This instability has not
been observed for the quadrupolar field in the Eddington-Sweet
regime because numerical limitations did not allow us to reach
significant levels of differential rotation. However we anticipate
that for realistic contraction Reynolds numbers and Lundquist
numbers, the differential rotation in the DZ of the quadrupo-
lar field will also trigger an instability in the Eddington-Sweet
regime. By contrast, the dipolar field configuration does not lead
to an instability. Indeed, in this case, the DZ is symmetric with
respect to the equator and the contraction produces maximum
rotation rates along the equator. The latitudinal differential ro-
tation thus increases away from the rotation axis which implies

stability with respect to the MRI. We note that the same config-
uration in an expanding layer would lead to minimum rotation
rates along the equator and thus to differential rotations poten-
tially unstable to MRI.

If we intent to extrapolate to a more complex geometry of
the initial poloidal field, the dipolar topology with a single equa-
torially symmetric DZ appears exceptional. Thus, we expect that
generically negative latitudinal gradients of the rotation rate, po-
tentially unstable to the MRI, are present in DZs. Rather than
the topology of the poloidal field, what can prevent the MRI to
develop is its intensity. Indeed, according to Balbus & Hawley
(1998), the magnetic tension stabilises the flow if the perturba-
tion length scales λr are smaller than (Br/Ω) ·

(√
2π/

√
µ0 ρ |q|

)
.

Applying this criteria to the degenerate core of a typical sub-
giant of 1.1 M� and 2 R�, we find that, assuming a O(1) shear
|q|, a rotation rate Ω = 3.1 · 10−6 rad · s−1 and a mean core
density ρc = 2.1 · 105 kg·m−3, fields higher than 3 · 105 G will
stabilise all the perturbations smaller than the degenerate core
size of 0.06 R�. In practice the radial wavelength of the unstable
modes is constrained by the stable stratification rather than by
the core size and thus even lower field intensities will be stabil-
ising. For example, in our simulations λr is ∼ 44 times smaller
than the outer radius of the spherical layer. The critical field
in our numerical simulations is reached for a Lorentz number
Lo = B0/

√
µ0ρ0r0Ω0 equal to ∼ 10−2. For the sub-giant core ro-

tation and density given above, this corresponds to a ∼ 104 G
critical field strength. As Pr (N0/Ω0)2 and Pm of the simulations
are not too far from realistic values in subgiant cores, and the
shear should remain limited to O(1) even for more realistic con-
traction Reynolds numbers, this critical field extrapolated from
the simulations might be of the right order of magnitude. To be
more precise, a closer look at the MRI driven by a negative rota-
tion latitudinal gradient in a radiative zone will be necessary.

Our numerical study thus points towards the following sce-
nario: during a first period of the order of the contraction
timescale, a contracting radiative layer embedded in a large scale
poloidal field tends to rotate uniformly except in localised DZs
where the contraction induces a significant differential rotation.
If the field is weak enough and not purely dipolar, the develop-
ment of a powerful axisymmetric MRI reconfigures the field and
diminishes its intensity. The magnetic coupling then becomes
inefficient in the major part of the radiative layer and the con-
traction can force the differential rotation there.

Such a scenario could potentially explain the evolution of the
rotation of the subgiants between the end of the MS and the tip
of the RGB. As mentioned in the introduction, the asteroseismic
data can be reproduced by assuming a uniform rotation during a
first period after the end of the MS followed by a second period
where the contraction is left free to enforce differential rotation
(Spada et al. 2016). This is consistent with the two young sub-
giants in near solid-body found by Deheuvels et al. (2020). At
their age, the post-MS contraction should have increased their
core rotation by a factor of four which means that the period
of uniform rotation should last at least a contraction time scale.
This time-scale is compatible with our scenario.

Our simulations are nevertheless far to describe the full com-
plexity of a magnetic and contracting subgiant. In particular,
an expanding layer and boundary conditions mimicking the ef-
fect of a convective envelope should be added. The role of non-
axisymmetric instabilities should also be considered, especially
in the magnetic configuration that results from the axisymmetric
instability. Non-axisymmetric MRI or Tayler instability might
indeed be present and take part to the AM transport particularly
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along the giant branch as already invoked (Cantiello et al. 2014;
Fuller et al. 2019).

As far as intermediate-mass stars are concerned, the occur-
rence of a powerful contraction-driven instability could help ex-
plain the dichotomy between Ap/Bp and Vega-like magnetisms.
Indeed, strong Ap/Bp-like magnetic fields are expected to sur-
vive the instability during the PMS while below a certain field
intensity the axisymmetric MRI would change the pre-existing
large scale field into a small-scale field of smaller amplitude
leading to Vega-like magnetism. This is in line with the sce-
nario proposed by Aurière et al. (2007) except that the insta-
bility invoked in this paper was a non-axisymmetric instability
produced during the initial winding-up of the poloidal field by
the differential rotation. Numerical investigations of this process
confirmed the presence of such instabilities but not their ability
to profoundly modify the pre-existing poloidal field Jouve et al.
(2015, 2020). By contrast, the axisymmetric MRI found in the
present paper has a very strong impact on the initial poloidal
field destroying its large scale structure and even diminishing its
amplitude. To test this scenario, the threshold field strength that
separates MRI stable and from MRI unstable configurations is
crucial because it should be compatible with the observed 300
G lower bound of Ap/Bp surface magnetic fields. Again, this
calls for further numerical and theoretical investigations of the
critical field of the MRI driven by rotation latitudinal gradients
in radiative zones.

Part of the above discussion is based on extrapolations of our
numerical results to stellar conditions. Our simulations are in-
deed a simplified version of a contracting star. Among the sim-
plifications, the ratio between the contraction time and the ro-
tation time is larger in stars than in our simulations (τc/τΩ ∼

3.4 · 108 − 1.1 · 1011 in stars while this ratio is comprised be-
tween 103 and 5 · 105 in our simulations). However the physical
model derived from our simulation does not depend critically on
this ratio. Indeed, by running our simulations for 5 − 6 contrac-
tion times, we observed that, after a contraction time, a pow-
erful axisymmetric MHD instability develops. This leads to a
complete reconfiguration of the initial magnetic field and to the
subsequent development of differential rotation in most part of
the spherical shell. This process should not be affected by in-
creasing the ratio τc/τΩ to stellar values. In the same spirit, the
ratio τΩ/τν, the Ekman number, is much lower in stars than in
numerical simulations. But as shown in Gouhier et al. (2021),
the hydrodynamical AM transport is not affected when this ra-
tio is decreased by various orders of magnitude. Thus, despite
the simplifications inherent to numerical simulations, the phys-
ical model derived from these simulations seems robust enough
to apply to stars, especially in the viscous regime where the MRI
has been observed. A question that remains to be addressed in
future works concerns the occurrence of the MRI in more re-
alistic Eddington-Sweet regimes which will require to explore
the strongly non-linear regime corresponding to very large ratio
τc/τν.
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Case Topology Contraction in induction equation E Pr

( N0

Ω0

)2
Rec Lu

ρi

ρ0

D1 Dipole No 10−4 104 10−1 104 1
D2 Dipole No 10−4 104 10−1 5 · 104 1
D3 Dipole No 10−4 104 1 5 · 103 1
D4 Dipole No 10−4 104 1 104 1
D5 Dipole No 10−4 104 1 5 · 104 1
D6 Dipole No 10−4 104 5 104 1
D7 Dipole No 10−4 104 5 5 · 104 1
D8 Dipole Yes 10−4 104 10−1 104 1
D9 Dipole Yes 10−4 104 5 · 10−1 103 1

D10 Dipole Yes 10−4 104 5 · 10−1 5 · 103 1
D11 Dipole Yes 10−4 104 5 · 10−1 104 1
D12 Dipole Yes 10−4 104 1 5 · 103 1
D13 Dipole Yes 10−4 104 1 104 1
D14 Dipole Yes 10−4 104 2 104 1
D15 Dipole Yes 10−4 104 1 5 · 103 20.85
D16 Dipole Yes 10−4 104 1 104 20.85
D17 Dipole Yes 10−4 104 1 5 · 104 20.85
D18 Dipole Yes 10−4 104 1 105 20.85
D19 Dipole Yes 10−4 104 5 104 20.85
D20 Dipole Yes 10−4 104 5 5 · 104 20.85
D21 Dipole Yes 10−5 10−1 10−1 5 · 104 20.85
D22 Dipole Yes 10−5 10−1 10−1 105 20.85
D23 Dipole Yes 10−5 10−1 5 · 10−1 5 · 104 20.85
D24 Dipole Yes 10−5 10−1 5 · 10−1 105 20.85
D25 Dipole Yes 10−5 10−1 1 5 · 103 20.85
D26 Dipole Yes 10−5 10−1 1 104 20.85
D27 Dipole Yes 10−5 10−1 1 5 · 104 20.85
D28 Dipole Yes 10−5 10−1 1 105 20.85
D29 Dipole Yes 10−5 10−1 2 5 · 104 20.85
D30 Dipole Yes 10−5 10−1 2 105 20.85
D31 Dipole Yes 10−5 10−1 5 105 20.85
D32 Dipole Yes 10−5 10−2 10−1 5 · 104 20.85
D33 Dipole Yes 10−5 10−2 10−1 105 20.85
D34 Dipole Yes 10−5 10−2 5 · 10−1 5 · 104 20.85
D35 Dipole Yes 10−5 10−2 5 · 10−1 105 20.85
D36 Dipole Yes 10−5 10−2 1 5 · 104 20.85
D37 Dipole Yes 10−5 10−2 1 105 20.85
D38 Dipole Yes 10−5 10−2 2 5 · 104 20.85
D39 Dipole Yes 10−5 10−2 2 105 20.85
Q1 Quadrupole No 10−4 104 1 104 1
Q2 Quadrupole No 10−4 104 1 5 · 104 1
Q3 Quadrupole No 10−4 104 5 5 · 103 1
Q4 Quadrupole No 10−4 104 5 104 1
Q5 Quadrupole No 10−4 104 5 5 · 104 1
Q6 Quadrupole Yes 10−4 104 5 · 10−1 103 1
Q7 Quadrupole Yes 10−4 104 5 · 10−1 5 · 103 1
Q8 Quadrupole Yes 10−4 104 5 · 10−1 104 1
Q9 Quadrupole Yes 10−4 104 1 5 · 103 1

Q10 Quadrupole Yes 10−4 104 1 104 1
Q11 Quadrupole Yes 10−4 104 2 104 1
Q12 Quadrupole Yes 10−5 10−1 1 5 · 104 20.85
Q13 Quadrupole Yes 10−5 10−1 1 105 20.85
Q14 Quadrupole Yes 10−5 10−1 2 5 · 104 20.85
Q15 Quadrupole Yes 10−5 10−1 2 105 20.85
Q16 Quadrupole Yes 10−5 10−1 3 5 · 104 20.85
Q17 Quadrupole Yes 10−5 10−1 5 5 · 104 20.85

Table 1: Parameters of the simulations performed at Pm = 102 in the viscous and Eddington-Sweet regimes.
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Case Contraction in induction equation Rec Lu
σ1

| < q > |Ω
σ2

| < q > |Ω
σ3

| < q > |Ω
σ

| < q > |Ω

Q3 No 5 5 · 103 2.5 · 10−2 2.4 · 10−2 1.9 · 10−2 2.2 · 10−2

Q4 No 5 104 3.9 · 10−2 3.6 · 10−2 3.4 · 10−2 3.6 · 10−2

Q9 Yes 1 5 · 103 1.1 · 10−2 8.8 · 10−3 8.1 · 10−3 9.2 · 10−3

Q10 Yes 1 104 1.8 · 10−2 1.5 · 10−2 1.5 · 10−2 1.6 · 10−2

Q11 Yes 2 104 1.8 · 10−2 2.1 · 10−2 1.5 · 10−2 1.8 · 10−2

Table 2: Ratio between the growth rate σi=1,2,3 of the instability and the product of the absolute value of the surface-averaged shear
parameter | < q > | by the local rotation rate Ω. The σi=1,2,3 are the growth rates associated to the different control points visible in
the first panel of Fig. 15 for the cases Q3 and Q4, and in the second panel for the runs Q9 to Q11. The surface-averaged value of the
shear parameter is obtained by taking a surface enclosing the location of the instability then by calculating a surface integral such as
< q >= 1/S

!
(∂ ln Ω/∂ ln θ) dS . From these ratios an arithmetic mean is determined and denoted by (σ/| < q > |Ω) in the present

Table. The parameters Pr (N0/Ω0)2, E and Pm are respectively fixed to 104, 10−4 and 102 for each run.

Case Contraction in induction equation Rec Lu
V1 phase

V f1

V2 phase

V f2

V3 phase

V f3

Vphase

V f

VBφ

V f

Q3 No 5 5 · 103 0.28 0.33 0.35 0.32 −0.68
Q4 No 5 104 0.07 0.09 0.11 0.09 −0.91
Q9 Yes 1 5 · 103 1.78 2.12 2.49 2.13 1.13

Q10 Yes 1 104 1.52 1.77 2.20 1.83 0.83
Q11 Yes 2 104 2.00 2.00 2.34 2.11 1.11

Table 3: Ratio of the phase velocity V phase i=1,2,3
and the local contraction velocity field V f i=1,2,3 estimated at a given control point as

explained in Table 2. An arithmetic mean is obtained from these ratios and denoted by Vphase/V f . We also have listed the arithmetic
mean of the ratio between the velocity field caused by the addition of the toroidal field and the contraction velocity field. The
parameters E, Pr (N0/Ω0)2 and Pm are respectively 10−4, 104 and 102.
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Appendix A: Electrical-current function

In this appendix we determine the stream function that is constant along the streamlines of the poloidal component of the current
density

#»
j p. The toroidal component of the magnetic field is related to

#»
j p through

#»
j p =

#»

∇ ×
(
Bφ #»e φ

)
=

1
r sin θ

∂

∂θ

(
sin θBφ

)
#»e r −

1
r
∂

∂r

(
rBφ

)
#»e θ. (A.1)

As the divergence of the curl is zero and the problem is axisymmetric we can define a vector potential χ as

jr =
1

r sin θ
∂

∂θ
(sin θχ) ; jθ =

−1
r
∂

∂r
(rχ) , (A.2)

from which we define the electrical-current stream function Jp = r sin θχ:

jr =
1

r2 sin θ
∂Jp

∂θ
; jθ =

−1
r sin θ

∂Jp

∂r
. (A.3)

We thus obtain a relationship between the toroidal field and the electrical-current stream function

1
r sin θ

∂

∂θ

(
sin θBφ

)
=

1
r2 sin θ

∂Jp

∂θ
; −

1
r
∂

∂r

(
rBφ

)
=
−1

r sin θ
∂Jp

∂r
. (A.4)

By integrating the first equation we have

Jp = r
∫

∂

∂θ

(
sin θBφ

)
dθ = r sin θBφ + f (r), (A.5)

and substituting in the second equation we deduce

f
′

(r)
−r sin θ

= 0 =⇒ f (r) = cte. (A.6)

As the electrical-current stream function is zero at the poles, we conclude that cte = 0 hence

Jp = r sin θBφ. (A.7)

Appendix B: Hartmann boundary layer equations

Fig. B.1: Toroidal field normalised to B0 (left panel) and differential rotation normalised to Ω0 (right panel) respectively rescaled by
L2

uE/P2
mRec and Lu/

√
PmRec, as a function of the stretched coordinate ξ = Ha (r0 − r). The curves are plotted at θ = π/4 for various

Rec and Lu with no contraction term in the induction equation. We thus have Rec = 1, Lu = 5 · 103 in green, Rec = 1, Lu = 104 in
light blue, Rec = 1, Lu = 5 · 104 in blue, Rec = 5, Lu = 104 in purple and Rec = 5, Lu = 5 · 104 in black. The other parameters are
E = 10−4, Pr (N0/Ω0)2 = 104 and Pm = 102 (runs D3 to D7 of Table 1).
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In the present appendix the Hartmman boundary layer equations are derived with the aim of relating the jump of the toroidal
field across the layer with the differential rotation jump. The Hartmann layer occurs at the electrically insulating outer boundary
where the azimuthal velocity is fixed and a magnetic field perpendicular to the flow is present. When the contraction term is removed
from the induction equation, the governing equations for the azimuthal flow and the toroidal field component in the steady linear
limit read:

2Ω0

Us − sin θ
V0r2

0

r2

 =
1

µ0ρ0

[
Bθ
r
∂Bφ
∂θ

+
cot θ

r
BθBφ + Br

∂Bφ
∂r

+
BrBφ

r

]
+ ν

[
∂2Uφ

∂r2 +
2
r
∂Uφ

∂r
+

1
r2

∂2Uφ

∂θ2 +
cot θ

r2

∂Uφ

∂θ
−

Uφ

r2 sin2 θ

]
,

(B.1)

Ur
∂Bφ
∂r

+
Uθ

r
∂Bφ
∂θ
− Br

∂Uφ

∂r
−

Bθ
r
∂Uφ

∂θ
+ Uφ

(Br

r
+

cot θBθ
r

)
− Bφ

(Ur

r
+

cot θUθ

r

)
=

η

[
∂2Bφ
∂r2 +

2
r
∂Bφ
∂r

+
1
r2

∂2Bφ
∂θ2 +

cot θ
r2

∂Bφ
∂θ
−

Bφ
r2 sin2 θ

]
.

(B.2)

Since in our simulations the Elsasser number Λ = B2
0/µ0ρ0Ω0η is � 1, the Coriolis term becomes negligible with respect to the

Lorentz force (Acheson & Hide 1973), then, assuming Ur � Uφ and conserving the highest radial derivatives in each term, we get
the Hartmann boundary layer equations (see also reviews by Roberts (1967); Acheson & Hide (1973); Dormy et al. (1998)):

Br

µ0ρ0

∂BH
φ

∂r
= −ν

∂2UH
φ

∂r2 , Br

∂UH
φ

∂r
= −η

∂2BH
φ

∂r2 . (B.3)

where the index H denotes a boundary layer flow. As Br(r0, θ) = −B0 cos θ (see Eq. (22)), then after introducing the stretched
coordinate ξ =

(
B0r0/

√
µ0ρ0ην

)
(r0 − r), Sys. (B.3) is rewritten as:

cos θ
√
µ0ρ0

∂BH
φ

∂ξ
= −r0

√
ν

η

∂2UH
φ

∂ξ2 ,
√
µ0ρ0 cos θ

∂UH
φ

∂ξ
= −r0

√
η

ν

∂2BH
φ

∂ξ2 . (B.4)

By deriving the second of these two equations, UH
φ can be eliminated to yield:

∂3BH
φ

∂ξ3 −
cos2 θ

r2
0

∂BH
φ

∂ξ
= 0, (B.5)

whose the solution is

BH
φ (ξ, θ) = C1 +

C2r0

cos θ
exp

(
− cos θ

ξ

r0

)
+

C3r0

cos θ
exp

(
cos θ

ξ

r0

)
. (B.6)

From the evanescent condition when ξ → ∞, C1 = C3 = 0, and from the vacuum condition at the outer sphere BH
φ (0, θ) + BI

φ(r0, θ) =

0, C2 = − (cos θ/r0) BI
φ(r0, θ), hence:

BH
φ (ξ, θ) = −BI

φ(r0, θ) exp
(
− cos θ

ξ

r0

)
. (B.7)

This time, the index I stands for interior flow. We now integrate the second equation of Sys. (B.4):

UH
φ (ξ, θ) = −

1
√
µ0ρ0

√
η

ν
BI
φ(r0, θ) exp

(
− cos θ

ξ

r0

)
+ C4. (B.8)

Again, from the evanescent equation when ξ → ∞ we readily get C4 = 0. Then, as UH
φ (ξ, θ) + UI

φ(r0, θ) = 0 at the outer sphere we
obtain the following relationship between the interior flows:

UI
φ(r0, θ) =

1
√
µ0ρ0

√
η

ν
BI
φ(r0, θ), (B.9)
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and,

UH
φ (ξ, θ) = −UI

φ(r0, θ) exp
(
− cos θ

ξ

r0

)
. (B.10)

Thus, using the estimate Eq. (36), we deduce from Eq. (B.9) the order of magnitude of the jump on the differential rotation across
the Hartmann layer

UI
φ(r0, θ) ≈ O

(
r0µ0ρ0V0Ω0
√
µ0ρ0B0

√
η

ν

)
⇒

∆ΩI(r0, θ)
Ω0

≈ O

( √
µ0ρ0V0

B0

√
η

ν

)
= O

( √
PmRec

Lu

)
. (B.11)

In Fig. B.1 we plotted the normalised toroidal field Bφ/B0 (left panel) and the normalised differential rotation δΩ/Ω0 (right
panel) as a function of the stretched coordinate ξ at the particular location θ = π/4. This was done for runs obtained at vari-
ous Lu ranging from 5 · 103 to 5 · 104, both for Rec = 1 and 5 (runs D3 to D7 of Table 1). These quantities have been rescaled
with their characteristic amplitude as given by Eqs. (36) and (B.11). We can observe that the different curves overlap and are
of O(1) after rescaling. This enable us to conclude that the O (r0µ0ρ0V0Ω0/B0) jump on the toroidal magnetic field at the outer
sphere induces a O

(
r0
√
µ0ρ0V0Ω0

√
η/B0

√
ν
)

jump on the azimuthal velocity field across the Hartmann layer or equivalently, a

O
(√
µ0ρ0V0

√
η/B0

√
ν
)

jump on the normalised differential rotation. As a result, the quasi-solid rotation region is in differential
rotation with the outer sphere and the characteristic amplitude of this differential rotation is given by Eq. (B.11).

Appendix C: Approximate solutions of differential rotation in the dead zone

Appendix C.1: Case 1 - No effect of the contraction on the field lines

Fig. C.1: Sketch of the conical domain chosen to represent the DZ when the field lines are not advected by the contraction. The
displayed meridional cut of the normalised rotation rate is the same as in the first panel of Fig. 3. The conical domain, delimited by
thick black lines on the meridional cut, is defined by r ∈

[
riDZ ; r0

]
and θ ∈ [−θ0; θ0] with riDZ = 0.77r0, θ0 ≈ π/14 and −θ0 ≈ −π/14

or equivalently, in terms of colatitude, θ ∈ [3π/7; 4π/7].

This appendix is intended to solve in the DZ the viscous balance Eq. (35), whose dimensionless form reads

r̃
∂2δΩ̃

∂r2 + 4
∂δΩ̃

∂r
+

1
r̃
∂2δΩ̃

∂θ2 +
3 cot θ

r̃
∂δΩ̃

∂θ
=
−2
Er̃2 , (C.1)

To do so, the DZ is assimilated to a conical domain as sketched in Fig. C.1. This domain, denotedD, is such that:

D =
{
riDZ ≤ r ≤ r0 ; −θ0 ≤ θ ≤ θ0

}
, (C.2)

where riDZ = 0.77r0 and the latitude θ0 is ≈ π/14. In addition, we assume that the term (3 cos θ/r) ∂δΩ/∂θ is negligible as compared
to the others. This assumption has been verified a posteriori. Thus, Eq. (C.1) is rewritten as follows:

r̃3 ∂
2δΩ̃

∂r2 + 4r̃2 ∂δΩ̃

∂r
+ r̃

∂2δΩ̃

∂θ2 =
−2
E
. (C.3)
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Outside the domain D the flow is assumed to be in solid rotation and symmetrical with respect to the equatorial plane so that we
adopt the following homogenous boundary conditions:

δΩ(r0, θ) = δΩ(riDZ , θ) = δΩ(r, θ0) =
∂δΩ(r, θ)

∂θ

∣∣∣∣∣
θ=0

= 0. (C.4)

The method for solving Eq. (C.3) was excerpted from a lecture of the Ira A. Fulton College of Engineering and Technology at
Brigham Young University (https://www.et.byu.edu/~vps/ME505/IEM/0802.pdf). The broad lines are now given.

– We first build a set of basis functions that will be used to express the solution.
– They are obtained by looking for separable solutions of the eigenvalue problem

r̃3 ∂
2δΩ̃h

∂r2 + 4r̃2 ∂δΩ̃h

∂r
+ r̃

∂2δΩ̃h

∂θ2 = λ̃r̃δΩ̃h, (C.5)

satisfying the boundary conditions Eq. (C.4).
– We finally determine a general solution using the orthogonality properties of the basis functions.

Separable solutions, δΩ̃h = g̃(θ) f̃ (r), of Eq. (C.5) must verify:

r̃3 f̃
′′

(r) + 4r̃2 f̃
′

(r) + r̃g̃
′′

(θ) = λ̃ r̃g̃(θ) f̃ (r) =⇒
r̃2 f̃

′′

(r) + 4r̃ f̃
′

(r̃)
f̃ (r)

+
g̃
′′

(θ)
g̃(θ)

= λ̃, (C.6)

with the boundary conditions

g(θ0) = g
′

(0) = 0 and, f (r0) = f (riDZ ) = 0. (C.7)

The problem thus reduces to the solving the two following sub-eigenvalue problems:

g̃
′′

(θ) − ν̃g̃(θ) = 0 and, r̃2 f̃
′′

(r) + 4r̃ f̃
′

(r) − µ̃ f̃ (r) = 0 with ν̃ + µ̃ = λ̃. (C.8)

The differential equation in θ is a classical Sturm-Liouville problem while the differential equation in r is known as the Euler’s
problem. We first deal with the Sturm-Liouville problem.

In order to avoid unphysical solutions, the eigenvalues must be strictly negative. The solution then reads

g̃k(θ) = Ãk cos
( √
|ν̃k | θ

)
+ B̃k sin

( √
|ν̃k | θ

)
. (C.9)

Its latitudinal derivative is readily

g̃
′

k(θ) = −Ãk

√
|ν̃k | sin

( √
|ν̃k | θ

)
+ B̃k

√
|ν̃k | cos

( √
|ν̃k | θ

)
. (C.10)

From the condition of symmetry, B̃k = 0 and g̃k(θ) = Ãk cos
(√
|ν̃k | θ

)
. Besides, g̃k(θ0) = Ãk cos

(√
|ν̃k | θ0

)
= 0. Since we are looking

for a non-trivial solution (i.e., Ãk , 0) we obtain

√
|ν̃k |θ0 = kπ −

π

2
with k ∈ Z, (C.11)

thus concluding that

ν̃k = −

(
(2k − 1) π

2θ0

)2

with k ∈ Z, (C.12)

are the sought eigenvalues and are associated with the eigenfunctions

g̃k(θ) = Ãk cos
((

(2k − 1) π
2θ0

)
θ

)
with k ∈ Z. (C.13)

We are now going to solve the Euler’s problem. Here the eigenvalues must be < −9/4 to avoid unphysical solutions. In that case,
the solution reads:

f̃n(r) = C̃n r̃
−1
2

(
3 + i

√
|9 + 4 µ̃n|

)
+ D̃n r̃

−1
2

(
3 − i

√
|9 + 4 µ̃n|

)
, (C.14)
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which can be rewritten as

f̃n(r) =
C̃n

r̃3/2 cos
(

1
2

√
|9 + 4 µ̃n| ln (r̃)

)
+

D̃n

r̃3/2 sin
(

1
2

√
|9 + 4 µ̃n| ln (r̃)

)
. (C.15)

From the condition f̃n(1) = 0 we have Cn = 0 and

f̃n(r) =
D̃n

r̃3/2 sin
(

1
2

√
|9 + 4 µ̃n| ln (r̃)

)
. (C.16)

The second boundary condition leads to

D̃n

r̃3/2
i DZ

sin
(

1
2

√
|9 + 4 µ̃n| ln

(
r̃i DZ

))
= 0. (C.17)

Excluding the non-trivial solution D̃n = 0 we obtain

1
2

√
|9 + 4 µ̃n| ln

(
r̃i DZ

)
= nπ with n ∈ Z. (C.18)

The sought eigenvalues are thus

µ̃n = −

(
3
2

)2

−

(
nπ

ln
(
r̃i DZ

) )2

with n ∈ Z, (C.19)

and are associated with the eigenfunctions

f̃n(r) =
D̃n

r̃3/2 sin
(

nπ ln (r̃)
ln

(
r̃i DZ

) ) with n ∈ Z. (C.20)

The general solution δΩ(r, θ) is now expanded over the basis of the eigenfunctions satisfying the boundary conditions Eq. (C.7):

δΩ̃(r, θ) =

∞∑
n=1

∞∑
k=1

Ãnk

r̃3/2 sin
((

nπ
ln

(
r̃i DZ

) ) ln (r̃)
)

cos
((

(2k − 1) π
2θ0

)
θ

)
with n, k ∈ Z. (C.21)

Thus, this solution verifies the boundary conditions Eq. (C.4). We now need to find the Ank coefficients. These are determined using
the orthogonality properties of the eigenfunctions. After determining the different partial derivatives of the function δΩ(r, θ) and
after substituting their expressions in Eq. (C.3) we obtain the following relationship:

∞∑
n=1

∞∑
k=1

Ãnk
√

r̃

− (
3
2

)2

−

(
nπ

ln
(
r̃i DZ

) )2

−

(
(2k − 1) π

2θ0

)2 sin
((

nπ
ln

(
r̃i DZ

) ) ln (r̃)
)

cos
((

(2k − 1) π
2θ0

)
θ

)
=
−2
E
. (C.22)

As,

λ̃nk = −


(

3
2

)2

+

(
nπ

ln
(
r̃i DZ

) )2

︸                  ︷︷                  ︸
|µ̃n |

+

(
(2k − 1) π

2θ0

)2

︸          ︷︷          ︸
|ν̃k |

 with n, k ∈ Z, (C.23)

Eq. (C.22) is rewritten as follows

∞∑
n=1

∞∑
k=1

Ãnkλ̃nk

r̃3/2 sin
((

nπ
ln

(
r̃i DZ

) ) ln (r̃)
)

cos
((

(2k − 1) π
2θ0

)
θ

)
=
−2
r̃E

. (C.24)
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Multiplying each members of this relationship by r̃−1/2 sin
((

nπ
ln

(
r̃i DZ

) ) ln (r̃)
)

cos
((

(2k − 1) π
2θ0

)
θ

)
then integrating over the domain

D the resulting relationship, we obtain the coefficients Ank:

Ãnk =

 4 (nπ)2 +
(
ln

(
r̃i DZ

))2

Eλ̃nk
(
r̃i DZ − 1

)
(nπ)2 θ0

 ( −4θ0

(2k − 1) π
(−1)k

)  4nπ ln
(
r̃i DZ

)
4 (nπ)2 + 9

(
ln

(
r̃i DZ

))2

[
(−1)n r̃3/2

i DZ
− 1

] with n, k ∈ Z, (C.25)

and the final solution, which reads under dimensional form

δΩ(r, θ)
Ω0

= Rec

∞∑
n=1

∞∑
k=1




(2nπ)2 +

(
ln

(
riDZ

r0

))2

λnk

(
riDZ

r0
− 1

)
(nπ)2 θ0


(
−4θ0

(2k − 1) π
(−1)k

) 
4nπ ln

(
riDZ

r0

)
(2nπ)2 +

(
3 ln

(
riDZ

r0

))2

(−1)n
(

riDZ

r0

)3/2

− 1




( r0

r

)3/2
sin




nπ

ln
(

riDZ

r0

)
 ln

(
r
r0

) cos
((

(2k − 1) π
2θ0

)
θ

)]
with n, k ∈ Z

. (C.26)

Appendix C.2: Case 2 - Advection of the field lines by the contraction

Fig. C.2: Sketch of the conical domain chosen to represent the DZ when the field lines are advected by the contraction. The displayed
meridional cut of the normalised rotation rate is the same as in the third panel of Fig. 3. The conical domain, delimited by thick
black lines on the meridional cut, is defined by r ∈ [ri; r0] and θ ∈ [−θ0; θ0] where θ0 ≈ 4π/23 and −θ0 ≈ −4π/23 or equivalently, in
terms of colatitude, θ ∈ [15π/46; 31π/46].

When the contraction term is introduced in the induction equation, the poloidal field lines are advected and the DZ connects to
the inner sphere (see Fig. C.2). This modifies the boundary conditions Eq. (C.4) since at the inner sphere, the azimuthal velocity
field now satisfies a stress-free condition hence:

δΩ(r0, θ) =
∂δΩ(r, θ)

∂θ

∣∣∣∣∣
r=ri

= δΩ(r, θ0) =
∂δΩ(r, θ)

∂θ

∣∣∣∣∣
θ=0

= 0. (C.27)

Thus, the solution of the Sturm-Liouville problem is unchanged and the sought eigenvalues are again Eq. (C.12) and are associated
with the eigenfunctions Eq. (C.13). For the Euler’s problem the eigenvalues must still be < 9/4 to avoid unphysical solutions. By
taking Eq. (C.15) and after using the condition f̃n(1) = 0 we have

f̃n(r) =
D̃n

r̃3/2 sin
(

1
2

√
|9 + 4 µ̃n| ln (r̃)

)
. (C.28)
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By deriving this expression to apply the stress-free condition to it, we get the transcendental equation

3 tan
(

1
2

√
|9 + 4 µ̃n| ln(r̃i)

)
−

√
|9 + 4 µ̃n| = 0. (C.29)

After numerically solving this equation we obtain the eigenvalues µn. The general solution δΩ(r, θ) of Eq. (C.3) is then expanded
on the basis of the eigenfunctions satisfying the boundary conditions Eq. (C.27) on the domainD

δΩ̃(r, θ) =

∞∑
n=1

∞∑
k=1

Ãnk

r̃3/2 sin
(

1
2

√
|9 + 4 µ̃n| ln (r̃)

)
cos

((
(2k − 1) π

2θ0

)
θ

)
with n, k ∈ Z. (C.30)

As previously, after determining the different partial derivatives of the function δΩ(r, θ), and after substituting them in Eq. (C.3) we
get:

∞∑
n=1

∞∑
k=1

Ãnk
√

r̃

µ̃n −

(
(2k − 1) π

2θ0

)2

︸                 ︷︷                 ︸
λ̃nk

 sin
(

1
2

√
|9 + 4 µ̃n| ln (r̃)

)
cos

((
(2k − 1) π

2θ0

)
θ

)
=
−2
E
. (C.31)

Again, using the orthogonality properties enables us to determine the Ank coefficients

Ank =
16 (1 + |9 + 4µ̃n|) (−1)k

Eλnk (2k − 1) (9 + |9 + 4µ̃n|) π
·

[
2
√
|9 + 4µ̃n|

(
r̃3/2

i cos
(

1
2

√
|9 + 4µ̃n| ln (r̃i)

)
− 1

)
− 6 r̃3/2

i sin
(

1
2

√
|9 + 4µ̃n| ln (r̃i)

)]
[
|9 + 4µ̃n| (1 − r̃i) + r̃i

(
cos

( √
|9 + 4µ̃n| ln (r̃i)

)
+

√
|9 + 4µ̃n| sin

( √
|9 + 4µ̃n| ln (r̃i)

)
− 1

)] ,
(C.32)

and so the final solution which, under dimensional form, reads:

δΩ(r, θ)
Ω0

= Rec

∞∑
n=1

∞∑
k=1

2 √
|9 + 4µn|

( ri

r0

)3/2

cos
(

1
2

√
|9 + 4µn| ln

(
ri

r0

))
− 1

 − 6
(

ri

r0

)3/2

sin
(

1
2

√
|9 + 4µn| ln

(
ri

r0

))[
|9 + 4µn|

(
1 −

ri

r0

)
+

ri

r0

(
cos

(√
|9 + 4µn| ln

(
ri

r0

))
+

√
|9 + 4µn| sin

(√
|9 + 4µn| ln

(
ri

r0

))
− 1

)]
16 (1 + |9 + 4µn|) (−1)k

λnk (2k − 1) (9 + |9 + 4µn|) π

( r0

r

)3/2
sin

(
1
2

√
|9 + 4µn| ln

(
r
r0

))
cos

((
(2k − 1) π

2θ0

)
θ

)
,

(C.33)

where n, k ∈ Z.
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